login
a(n) = 9*2^n - 2.
5

%I #24 Jan 12 2024 17:29:35

%S 7,16,34,70,142,286,574,1150,2302,4606,9214,18430,36862,73726,147454,

%T 294910,589822,1179646,2359294,4718590,9437182,18874366,37748734,

%U 75497470,150994942,301989886,603979774,1207959550,2415919102

%N a(n) = 9*2^n - 2.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F a(n) = 2*(a(n-1)+1) with a(0) = 7.

%F a(n) = 3*a(n-1) -2*a(n-2). G.f.: (7-5*x) / ((2*x-1)*(x-1)). - _R. J. Mathar_, May 02 2010

%F a(n) = 2*A052996(n+1) for n > 0. - _Bruno Berselli_ and _Vincenzo Librandi_, Aug 27 2010

%F a(n) = A033484(n+2) - A007283(n). - _M. F. Hasler_, Dec 11 2018

%e For n = 1, a(1) = 2*(7+1) = 16;

%e for n = 2, a(2) = 2*(16+1) = 34;

%e for n = 3, a(3) = 2*(34+1) = 70.

%p A176449:=n->9*2^n-2; seq(A176449(n), n=0..100); # _Wesley Ivan Hurt_, Nov 08 2013

%t Table[9*2^n-2, {n,0,100}] (* _Wesley Ivan Hurt_, Nov 08 2013 *)

%t LinearRecurrence[{3,-2},{7,16},40] (* _Harvey P. Dale_, Jan 12 2024 *)

%o (Magma) [9*2^n-2: n in [0..100]]

%o (PARI) apply( A176449(n)=9<<n-2, [0..99]) \\ _M. F. Hasler_, Dec 11 2018

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Apr 18 2010

%E Edited by _M. F. Hasler_, Dec 11 2018