login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+1)*(a(n-1) +a(n-2)) n>1, a(0)=1,a(1)=0
6

%I #10 Nov 25 2017 09:29:04

%S 1,0,3,12,75,522,4179,37608,376083,4136910,49642923,645357996,

%T 9035011947,135525179202,2168402867235,36862848742992,663531277373859,

%U 12607094270103318

%N a(n) = (n+1)*(a(n-1) +a(n-2)) n>1, a(0)=1,a(1)=0

%C a(n) is one of two "basis" sequences for sequences of the form s(0)=a,s(1)=b,s(n)=(n+1)(s(n-1)+s(n-2)), n>1, the other being A006347.

%C s(n) = a*a(n) + b* A006347(n+1).

%C s(n) = 1/2*(b-2*a)(n+2)! +(3*a-b)*floor(((n+2)!+1)/e).

%H Indranil Ghosh, <a href="/A176408/b176408.txt">Table of n, a(n) for n = 0..447</a>

%H Michael Wallner, <a href="https://arxiv.org/abs/1706.07163">A bijection of plane increasing trees with relaxed binary trees of right height at most one</a>, arXiv:1706.07163 [math.CO], 2017, Table 2 on p. 13.

%F a(n) = 3*floor(((n+2)!+1)/e) - (n+2)!.

%F a(n) = 3* A000166(n+1) - (n+2)!, where A000166 are the subfactorial numbers.

%e a(2)= 3*9-24=3, a(3)= 3*44-120=12, a(4)= 3*265-720=75, ...

%p seq(3*floor(((n+2)!+1)/E) - (n+2)!,n=1..20);

%Y Cf. A000166, A006347.

%K nonn

%O 0,3

%A _Gary Detlefs_, Apr 16 2010

%E Data section corrected by _Indranil Ghosh_, Feb 15 2017