login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of (1/Pi)*Integral_{0..infinity} (sin x / x)^(2*n) dx.
2

%I #13 Dec 08 2019 20:53:42

%S 2,3,40,630,72576,3326400,148262400,13621608000,75277762560,

%T 243290200817664,2322315553259520000,538583682060103680000,

%U 85226428809510912000000,27777728189842735104000000,147362699895661699242393600000,4282728465717668134232064000000

%N Denominator of (1/Pi)*Integral_{0..infinity} (sin x / x)^(2*n) dx.

%C The numerators are given in A176365.

%C Bisection of A049331. See it for further references.

%H G. C. Greubel, <a href="/A176366/b176366.txt">Table of n, a(n) for n = 1..75</a>

%H M.R. Darafsheh, Hassan Jolany, <a href="https://arxiv.org/abs/1004.2653v1">Calculating (\int_0^\infty(sin^2n x)/x^2n dx)</a>, arXiv:1004.2653v1 [math.GM], 14 April 2010. Appears in International e-Journal of Engineering Mathematics: Theory and Application, 2009, vol. 7.

%F a(n) = A049331(2*n).

%e a(2) = 3 because Integral_{0..infinity} (sin(x)/x)^4 dx = (1/3)*Pi.

%e a(3) = 40 because Integral_{0..infinity} (sin(x)/x)^6 dx = (11/40)*Pi.

%e a(4) = 630 because Integral_{0..infinity} (sin(x)/x)^8 dx = (151/630)*Pi.

%e a(5) = 72576 because Integral_{0..infinity} (sin(x)/x)^10 dx = (15619/72576)*Pi.

%t a[n_]:= (1/Pi)*Integrate[(Sin[x]/x)^(2n), {x, 0, Infinity}]//Denominator;

%t Array[a, 16] (* _Jean-François Alcover_, Nov 25 2017 *)

%Y Cf. A176365.

%K frac,nonn

%O 1,1

%A _Jonathan Vos Post_, Apr 16 2010

%E Edited and extended by _Max Alekseyev_, May 07 2010