|
|
A176312
|
|
Numbers that are the products of two single (or isolated or non-twin) primes.
|
|
3
|
|
|
4, 46, 74, 94, 106, 134, 158, 166, 178, 194, 226, 254, 262, 314, 326, 334, 346, 422, 446, 466, 502, 514, 526, 529, 554, 586, 614, 634, 662, 674, 706, 718, 734, 746, 758, 766, 778, 794, 802, 818, 851, 878, 886, 898, 914, 934, 958, 974, 982, 998, 1006, 1018, 1081
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
isA007510 := proc(n) isprime(n) and not isprime(n+2) and not isprime(n-2) ; simplify(%) ; end proc:
isA176312 := proc(n) for d in numtheory[divisors](n) do if isA007510(d) and isA007510(n/d) then return true; end if; end do: return false; end proc:
for n from 1 to 1200 do if isA176312(n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Apr 20 2010:
|
|
MATHEMATICA
|
Select[Range[1000], PrimeOmega[#] == 2 && AllTrue[FactorInteger[#][[;; , 1]], ! PrimeQ[#1 - 2] && ! PrimeQ[#1 + 2] &] &] (* Amiram Eldar, Nov 30 2020 *)
|
|
CROSSREFS
|
Cf. A007510.
Sequence in context: A222899 A119729 A134110 * A309450 A119046 A273776
Adjacent sequences: A176309 A176310 A176311 * A176313 A176314 A176315
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Apr 15 2010
|
|
EXTENSIONS
|
Entries checked by R. J. Mathar, Apr 20 2010
|
|
STATUS
|
approved
|
|
|
|