OFFSET
0,4
COMMENTS
FORMULA
Number triangle T(n,k) = (-1)^(n-k)*(2n)!/((2k)!(n-k)!2^(n-k)).
He_(2*n)(x) = Sum_{k=0..n} T(n, k)*x^(2*k) where He is Hermite's polynomial. - Michael Somos, Jan 15 2020
EXAMPLE
Triangle begins
1,
-1, 1,
3, -6, 1,
-15, 45, -15, 1,
105, -420, 210, -28, 1,
-945, 4725, -3150, 630, -45, 1,
10395, -62370, 51975, -13860, 1485, -66, 1,
-135135, 945945, -945945, 315315, -45045, 3003, -91, 1,
2027025, -16216200, 18918900, -7567560, 1351350, -120120, 5460, -120, 1
Production matrix is
-1, 1,
2, -5, 1,
0, 12, -9, 1,
0, 0, 30, -13, 1,
0, 0, 0, 56, -17, 1,
0, 0, 0, 0, 90, -21, 1,
0, 0, 0, 0, 0, 132, -25, 1,
0, 0, 0, 0, 0, 0, 182, -29, 1,
0, 0, 0, 0, 0, 0, 0, 240, -33, 1
MAPLE
T := (n, k) -> (2*n)!*(-1/2)^(n-k)/(2*k)!*(n-k)!:
seq(seq(T(n, k), k=0..n), n=0..8); # Peter Luschny, Jul 20 2019
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
rows = 9;
R = RiordanArray[1/Sqrt[1 + 2 #]&, #/(1 + 2 #)&, rows, True];
R // Flatten (* Jean-François Alcover, Jul 20 2019 *)
T[ n_, k_] := Coefficient[ HermiteH[2 n, x/Sqrt[2]], x, 2 k]/2^n; (* Michael Somos, Jan 15 2020 *)
T[ n_, k_] := Coefficient[ Nest[# x - D[#, x]&, 1, 2 n], x, 2 k]; (* Michael Somos, Jan 15 2020 *)
PROG
(PARI) {T(n, k) = my(t=1); for(i=1, 2*n, t = x*t - t'); polcoeff(t, 2*k)}; /* Michael Somos, Jan 15 2020 */
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Apr 12 2010
STATUS
approved