Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Sep 08 2022 08:45:52
%S 1,1,1,1,-8,1,1,-44,-44,1,1,-188,-224,-188,1,1,-764,-944,-944,-764,1,
%T 1,-3068,-3824,-3968,-3824,-3068,1,1,-12284,-15344,-16064,-16064,
%U -15344,-12284,1,1,-49148,-61424,-64448,-65024,-64448,-61424,-49148,1
%N A symmetrical triangle sequence: T(n, k) = q^k + q^(n-k) - q^n, with q=4.
%C Row sums are: {1, 2, -6, -86, -598, -3414, -17750, -87382, -415062, -1922390, -8738134, ...}.
%H G. C. Greubel, <a href="/A176227/b176227.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n,k) = q^k + q^(n-k) - q^n, with q = 4.
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, -8, 1;
%e 1, -44, -44, 1;
%e 1, -188, -224, -188, 1;
%e 1, -764, -944, -944, -764, 1;
%e 1, -3068, -3824, -3968, -3824, -3068, 1;
%e 1, -12284, -15344, -16064, -16064, -15344, -12284, 1;
%p q:=4; seq(seq(q^k +q^(n-k) -q^n, k=0..n), n=0..12); # _G. C. Greubel_, Nov 23 2019
%t T[n_, k_, q_]:= q^k +q^(n-k) -q^n; Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by _G. C. Greubel_, Nov 23 2019 *)
%o (PARI) T(n,k,q) = my(q=4); q^k +q^(n-k) -q^n; \\ _G. C. Greubel_, Nov 23 2019
%o (Magma) q:=4; [q^k +q^(n-k) -q^n : k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 23 2019
%o (Sage) q=4; [[q^k +q^(n-k) -q^n for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 23 2019
%o (GAP) q:=4;; Flat(List([0..12], n-> List([0..n], k-> q^k +q^(n-k) -q^n ))); # _G. C. Greubel_, Nov 23 2019
%Y Cf. A176224 (q=2), A176225 (q=3), A176226 (q=5), this sequence (q=4).
%K sign,tabl
%O 0,5
%A _Roger L. Bagula_, Apr 12 2010
%E Edited by _G. C. Greubel_, Nov 23 2019