login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, T(n, k) = f(n,k,q) - f(n,0,q) + 1, where f(n, k, q) = [x^k](p(x,n,q)), p(x, n, q) = (1-x)^(n+1)*Sum_{k >= 0} ( (q*k+1)^n + (q*(k+1)-1)^n )*x^k, and q = 4.
3

%I #8 Jun 19 2024 09:32:39

%S 1,1,1,1,35,1,1,329,329,1,1,2535,6811,2535,1,1,18225,103925,103925,

%T 18225,1,1,127435,1384685,2868895,1384685,127435,1,1,881977,17115873,

%U 64568761,64568761,17115873,881977,1,1,6089807,202236439,1283008495,2302094507,1283008495,202236439,6089807,1

%N Triangle, read by rows, T(n, k) = f(n,k,q) - f(n,0,q) + 1, where f(n, k, q) = [x^k](p(x,n,q)), p(x, n, q) = (1-x)^(n+1)*Sum_{k >= 0} ( (q*k+1)^n + (q*(k+1)-1)^n )*x^k, and q = 4.

%H G. C. Greubel, <a href="/A176199/b176199.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = f(n, k, q) - f(n, 0, q) + 1, where f(n, k, q) = [x^k]( p(x, n, q) ), p(x, n, q) = (1-x)^(n+1) * Sum_{k >= 0} ( (q*k + 1)^n + (q*(k+1) - 1)^n )*x^k, and q = 4.

%F T(n, k) f(n, k, q) - f(n, 0, q) + 1, where f(n, k, q) = [x^k]( p(x, n, q) ), p(x, n, q) = q^n * (1-x)^(n+1) * ( LerchPhi(x, -n, 1/q) + LerchPhi(x, -n, (q-1)/q) ), and q = 4.

%F T(n, n-k) = T(n, k).

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 35, 1;

%e 1, 329, 329, 1;

%e 1, 2535, 6811, 2535, 1;

%e 1, 18225, 103925, 103925, 18225, 1;

%e 1, 127435, 1384685, 2868895, 1384685, 127435, 1;

%e 1, 881977, 17115873, 64568761, 64568761, 17115873, 881977, 1;

%t m:=13;

%t p[x_,n_,q_]:= (1-x)^(n+1)*Sum[((q*j+1)^n+(q*(j+1)-1)^n)*x^j, {j,0,m+ 2}];

%t f[n_,k_,q_]:= Coefficient[Series[p[x,n,q], {x,0,m+2}], x, k];

%t T[n_,k_,q_]:= f[n,k,q] - f[n,0,q] + 1;

%t Table[T[n,k,4], {n,0,m}, {k,0,n}]//Flatten

%o (Magma)

%o m:=13;

%o R<x>:=PowerSeriesRing(Integers(), m+2);

%o p:= func< x,n,q | (1-x)^(n+1)*(&+[((q*j+1)^n + (q*(j+1)-1)^n)*x^j: j in [0..m+2]]) >;

%o f:= func< n,k,q | Coefficient(R!( p(x,n,q) ), k) >;

%o T:= func< n,k,q | f(n,k,q) - f(n,0,q) + 1 >; // T = A176199

%o [T(n,k,4): k in [0..n], n in [0..m]]; // _G. C. Greubel_, Jun 18 2024

%o (SageMath)

%o m=13

%o def p(x,n,q): return (1-x)^(n+1)*sum(((q*j+1)^n + (q*(j+1)-1)^n)*x^j for j in range(m+3))

%o def f(n,k,q): return ( p(x,n,q) ).series(x, n+1).list()[k]

%o def T(n,k,q): return f(n,k,q) - f(n,0,q) + 1 # T = A176199

%o flatten([[T(n,k,4) for k in range(n+1)] for n in (0..m)]) # _G. C. Greubel_, Jun 18 2024

%Y Related triangles dependent on q: A008518 (q=1), A176198 (q=2), A174599 (q=3), this sequence (q=4).

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Apr 11 2010

%E Edited by _G. C. Greubel_, Jun 18 2024