

A176162


Primes p such that (p2)/5 is not a prime number.


3



2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 41, 43, 47, 53, 59, 61, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 311
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The old definition was "Start with the list of primes; accept 2 but remove the list of primes S(2); accept the next prime (3) but remove the list of primes S(3); repeat".
If p is a prime, S(p) denotes the list of primes {5p+2, 5(5p+2)+2, 5(5(5p+2)+2)+2, ...}, stopping as soon as we reach the first composite number.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000


MATHEMATICA

Select[Prime[Range[100]], !PrimeQ[(#  2) / 5] &] (* Vincenzo Librandi, Sep 12 2013 *)


CROSSREFS

Cf. A169647.
Sequence in context: A097375 A007459 A129944 * A152900 A079151 A274335
Adjacent sequences: A176159 A176160 A176161 * A176163 A176164 A176165


KEYWORD

nonn,easy


AUTHOR

Vincenzo Librandi, Apr 10 2010


EXTENSIONS

New definition from Jon E. Schoenfield, Jun 18 2010


STATUS

approved



