login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176158
Triangle read by rows: T(n,m) = (1 + 2 * binomial(n,m))^n for 0 <= m <= n, n >= 0.
0
1, 3, 3, 9, 25, 9, 27, 343, 343, 27, 81, 6561, 28561, 6561, 81, 243, 161051, 4084101, 4084101, 161051, 243, 729, 4826809, 887503681, 4750104241, 887503681, 4826809, 729, 2187, 170859375, 271818611107, 9095120158391, 9095120158391, 271818611107, 170859375, 2187
OFFSET
0,2
COMMENTS
Row sums are: 1, 6, 43, 740, 41845, 8490790, 6534766679, 18734219262120, 209617607911694569, 8719076076193077820874, 1429879617351180068934959131, ... .
FORMULA
T(n,m) = (1 + 2*binomial(n,m))^n.
EXAMPLE
{1},
{3, 3},
{9, 25, 9},
{27, 343, 343, 27},
{81, 6561, 28561, 6561, 81},
{243, 161051, 4084101, 4084101, 161051, 243},
{729, 4826809, 887503681, 4750104241, 887503681, 4826809, 729},
{2187, 170859375, 271818611107, 9095120158391, 9095120158391, 271818611107, 170859375, 2187}.
MAPLE
f:= proc(n) local m; seq((binomial(n, m)*2+1)^n, m=0..n) end proc:
for n from 0 to 10 do f(n) od; # Robert Israel, Dec 04 2024
MATHEMATICA
Clear[p, n, m];
p[x_, n_, m_] := (1 + 2*Binomial[n, m]*x)^n;
Table[Table[ Apply[Plus, CoefficientList[p[x, n, m], x]], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Columns m=0-1 give: A000244, A085527.
Sequence in context: A257180 A184694 A215885 * A083008 A268092 A229024
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 10 2010
EXTENSIONS
Edited by Robert Israel, Dec 04 2024
STATUS
approved