login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Table T(n,k) = ceiling(10^n/(10^k-1)), n >= 0, k >= 1, read by antidiagonals.
0

%I #2 Mar 30 2012 17:36:45

%S 1,2,1,12,1,1,112,2,1,1,1112,11,1,1,1,11112,102,2,1,1,1,111112,1011,

%T 11,1,1,1,1,1111112,10102,101,2,1,1,1,1,11111112,101011,1002,11,1,1,1,

%U 1,1,111111112,1010102,10011,101,2,1,1,1,1,1,1111111112,10101011,100101

%N Table T(n,k) = ceiling(10^n/(10^k-1)), n >= 0, k >= 1, read by antidiagonals.

%C For n+1 >= k, minimal number of k-digit base 10 numbers totaling an (n+1)-digit sum.

%C Column 1 of the table, T(n,1) = 1, 2, 12, 112, 1112, ..., is A047855.

%C T(n,k) = 1 for k >= n+1.

%C T(i,i) = 2 for i > 0. Generally, for all m >= 1 and i >= 0, T(2m-1+i,m+i) = 10^(m-1) + 1.

%e The table begins:

%e .........1,........1,.......1,......1,.....1,....1,...1,..1,.1,1,1,1,...

%e .........2,........1,.......1,......1,.....1,....1,...1,..1,.1,1,1,1,...

%e ........12,........2,.......1,......1,.....1,....1,...1,..1,.1,1,1,1,...

%e .......112,.......11,.......2,......1,.....1,....1,...1,..1,.1,1,1,1,...

%e ......1112,......102,......11,......2,.....1,....1,...1,..1,.1,1,1,1,...

%e .....11112,.....1011,.....101,.....11,.....2,....1,...1,..1,.1,1,1,1,...

%e ....111112,....10102,....1002,....101,....11,....2,...1,..1,.1,1,1,1,...

%e ...1111112,...101011,...10011,...1001,...101,...11,...2,..1,.1,1,1,1,...

%e ..11111112,..1010102,..100101,..10002,..1001,..101,..11,..2,.1,1,1,1,...

%e .111111112,.10101011,.1001002,.100011,.10001,.1001,.101,.11,.2,1,1,1,...

%e 1111111112,101010102,10010011,1000101,100002,10001,1001,101,11,2,1,1,...

%e ...

%o (PARI) T(n,k) = if(n>=0 && k>=1, ceil(10^n/(10^k-1)))

%Y Cf. A047855.

%K nonn,tabl

%O 0,2

%A _Rick L. Shepherd_, Apr 10 2010