login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Conway variant a(n) = 1+a(n-1-(n mod a(n-1))), with a(1)=1.
3

%I #25 Dec 13 2017 11:50:51

%S 1,2,2,3,3,4,3,4,4,4,4,5,5,5,6,5,6,7,6,7,8,7,8,9,7,8,9,9,9,9,9,9,9,9,

%T 9,10,10,10,10,11,10,11,10,11,11,11,11,11,11,11,11,11,11,11,12,12,12,

%U 12,12,13,12,13,12,13,14,13,14,13,14,15,13,14,15,13,14,15,14,15,14,15,14

%N Conway variant a(n) = 1+a(n-1-(n mod a(n-1))), with a(1)=1.

%C The sequence grows slowly. (a <= 100 for n <=3069, a <=200 for n<=12139, a<=300 for n <= 29003.)

%C Increasing long periods of repetition of the same number are interleaved by perturbations (see the picture in the links section).

%C The first occurrence of jumps of magnitude |a(n+1)-a(n)|=k are:

%C k=2 -> n=24: |a(25)-a(24)|=|7-9|=2

%C k=3 -> n=147: |a(148)-a(147)|=|19-22|=3

%C k=4 -> n=152: |a(153)-a(152)|=|23-19|=4

%C k=5 -> n=560: |a(561)-a(560)|=|45-40|=5

%C k=6 -> n=12139: |a(12140)-a(12139)|=|194-200|=6

%C Bootstrapping from a(1)=2 would generate A000027 (starting from 2).

%C A similar sequence a(n)=1+a(1+(n mod a(n-1))), with a(1)=1 eventually enters the periodic sequence 3,2,3,4,3,3,4,2,3,4,4,2. With a(1)=2, the period is 60.

%D G. Balzarotti and P. P. Lava, 103 curiosità matematiche, Hoepli, 2010, p. 274.

%H Paolo P. Lava, <a href="/A176075/b176075.txt">Table of n, a(n) for n = 1..10000</a>

%H Paolo P. Lava, <a href="/A176075/a176075.pdf">Plot of the first 10000 terms of the sequence</a>

%H John A. Pelesko, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Pelesko/pel11.html">Generalizing the Conway-Hofstadter $10,000 Sequence</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.5.

%H Klaus Pinn, <a href="https://arxiv.org/abs/cond-mat/9808031">A Chaotic Cousin Of Conway's Recursive Sequence</a>, arXiv:cond-mat/9808031, 1998.

%e a(1)=1.

%e a(2)=1+a(2-1-(2 mod 1))=1+a(1-0)=1+a(1)=2.

%e a(3)=1+a(3-1-(3 mod 2))=1+a(2-1)=1+a(1)=2.

%e a(4)=1+a(4-1-(4 mod 2))=1+a(3-0)=1+a(3)=3.

%e a(5)=1+a(5-1-(5 mod 3))=1+a(4-2)=1+a(2)=3.

%e a(6)=1+a(6-1-(6 mod 3))=1+a(5-0)=1+a(5)=4.

%e a(7)=1+a(7-1-(7 mod 4))=1+a(6-3)=1+a(3)=3.

%p P:=proc(i) local a,n; a:=array(1..100000); a[1]:=1; print(a[1]); for n from 2 by 1 to i do a[n]:=1+a[n-1-(n mod a[n-1])]; print(a[n]); od; end: P(100000);

%p # alternative program

%p A176075 := proc(n) option remember; if n = 1 then 1 else 1+procname(n-1-(n mod procname(n-1))) ; end if;end proc: # _R. J. Mathar_, Jan 23 2011

%t a[1] = 1; a[n_] := a[n] = 1 + a[n - 1 - Mod[n, a[n - 1]]];

%t Array[a, 80] (* _Jean-François Alcover_, Dec 13 2017 *)

%Y Cf. A004001, A176076.

%K nonn

%O 1,2

%A _Paolo P. Lava_ and _Giorgio Balzarotti_, Apr 09 2010