Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 28 2024 13:59:27
%S 1,4,2,0,3,0,4,0,4,3,0,1,5,4,0,1,0,1,10,6,5,2,1,2,0,7,6,0,0,4,5,3,10,
%T 9,3,2,1,5,6,4,11,10,4,3,0,3,5,3,0,3,1,11,10,7,6,4,6,4,1,4,2,12,11,8,
%U 7,0,0,0,5,2,5,3,13,12,9,8,1,0,3,3,8,5,8,6,16,15,12,11,4,3,2
%N Triangle read by rows: R(n,k)=semiprime(n+1) mod (semiprime(k)+1), 1<=k<=n.
%F R(n,k) = A001358(n+1) mod (1+A001358(k)).
%e The triangle begins as:
%e 1;
%e 4, 2;
%e 0, 3, 0;
%e 4, 0, 4, 3;
%e 0, 1, 5, 4, 0;
%e ...
%p A176066 := proc(n,k) A001358(n+1) mod ( A001358(k)+1) ; end proc:
%t Table[Mod[#[[n+1]], #[[;;n]]+1], {n, Length[#]-1}] & [Select[Range[50], PrimeOmega[#] == 2 &]] (* _Paolo Xausa_, Jun 28 2024 *)
%o (PARI) trg(nn) = {semip = select(n->bigomega(n) == 2, vector(nn, i, i)); for (n = 1, #semip-1, for (k = 1, n, print1(semip[n+1] % (semip[k] + 1), ", ");););} \\ _Michel Marcus_, Sep 11 2013
%Y Cf. A000079, A001358, A174996.
%K nonn,tabl
%O 1,2
%A _Juri-Stepan Gerasimov_, Dec 06 2010