Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 01 2023 02:28:54
%S 3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,
%T 3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,
%U 3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3
%N Periodic sequence: Repeat 3, 1.
%C Interleaving of A010701 and A000012.
%C Also continued fraction expansion of (3+sqrt(21))/2.
%C Also decimal expansion of 31/99.
%C Essentially first differences of A014601.
%C Inverse binomial transform of 3 followed by A020707.
%C Second inverse binomial transform of A052919 without initial term 2.
%C Third inverse binomial transform of A007582 without initial term 1.
%C Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + ... is the o.g.f. for A008619. - _Peter Bala_, Mar 13 2015
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F a(n) = 2+(-1)^n.
%F a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 1.
%F a(n) = -a(n-1)+4 for n > 0; a(0) = 3.
%F a(n) = 3*((n+1) mod 2)+(n mod 2).
%F a(n) = A010684(n+1).
%F G.f.: (3+x)/((1-x)*(1+x)).
%F From _Amiram Eldar_, Jan 01 2023: (Start)
%F Multiplicative with a(2^e) = 3, and a(p^e) = 1 for p >= 3.
%F Dirichlet g.f.: zeta(s)*(1+2^(1-s)). (End)
%t PadRight[{},120,{3,1}] (* or *) LinearRecurrence[{0,1},{3,1},120] (* _Harvey P. Dale_, Mar 11 2015 *)
%o (Magma) &cat[ [3, 1]: n in [0..52] ];
%o [ 2+(-1)^n: n in [0..104] ];
%Y Cf. A010701 (all 3's sequence), A000012 (all 1's sequence), A090458 (decimal expansion of (3+sqrt(21))/2), A010684 (repeat 1, 3), A014601 (congruent to 0 or 3 mod 4), A020707 (2^(n+2)), A052919, A007582 (2^(n-1)*(1+2^n)), A008619.
%K cofr,cons,easy,nonn,mult
%O 0,1
%A _Klaus Brockhaus_, Apr 07 2010