OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
David Sankoff, Simultaneous solution of the RNA folding, alignment and protosequence problems, SIAM J. Appl. Math 45(5) (1985), 810-825.
David Sankoff, Simultaneous solution of the RNA folding, alignment and protosequence problems, SIAM J. Appl. Math 45(5) (1985), 810-825.
FORMULA
G.f.: (3 - x - sqrt(1 - 6*x + x^2))/(2*(1 - x)).
Conjecture : n*a(n) +(9-7*n)*a(n-1) +(7*n-12)*a(n-2) +(3-n)*a(n-3)=0. - R. J. Mathar, Jul 24 2012
a(n) ~ 2^(1/4)*(3 + 2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
EXAMPLE
For n = 3, the a(3) = 10 branching configurations with 3 or fewer hairpins are: unfolded, (), ()(), (()()), ()()(), (()())(), ()(()()), (()()()), ((()())()), and (()(()())).
MATHEMATICA
CoefficientList[Series[(3-x-Sqrt[1-6*x+x^2])/(2*(1-x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((3-x-sqrt(1-6*x+x^2))/(2*(1-x))) \\ G. C. Greubel, Mar 22 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Lee A. Newberg, Apr 05 2010
STATUS
approved