login
Decimal expansion of e^(1+1/e), e = exp(1).
2

%I #19 Jun 12 2024 07:34:14

%S 3,9,2,7,0,1,4,3,9,4,7,4,1,6,4,4,9,0,9,9,2,7,9,5,3,5,2,2,2,6,7,2,9,6,

%T 8,6,9,7,1,6,0,4,0,0,1,2,3,4,6,8,4,6,2,0,1,9,1,6,4,9,8,4,8,5,0,4,1,5,

%U 5,6,1,5,4,5,7,2,9,9,8,0,0,2,5,5,9,8,3,0,3,5,2,2,7,1,2,9,8,6,2,4

%N Decimal expansion of e^(1+1/e), e = exp(1).

%C Area of the rectangle having as opposite corners the origin and (e,e^(1/e)), maximum of the graph y=x^(1/x).

%H Paolo Xausa, <a href="/A175993/b175993.txt">Table of n, a(n) for n = 1..10000</a>

%F Product of A001113 and A073229.

%e 3.92701439474164490992795352226729686971604001234684620191649848504155615457299800255983...

%t First[RealDigits[Exp[1 + 1/E], 10, 100]] (* _Paolo Xausa_, Jun 12 2024 *)

%o (PARI) default(realprecision,99);e=exp(1);e^(1+1/e) \\ _M. F. Hasler_, Nov 27 2012

%Y Cf. A001113, A073229.

%K cons,nonn

%O 1,1

%A _Dylan Hamilton_, Nov 05 2010

%E Edited by _M. F. Hasler_, Nov 27 2012