Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 02 2021 11:06:27
%S 1,3,2,6,7,5,3,7,13,15,14,10,11,7,4,12,15,27,26,30,31,29,15,11,21,23,
%T 22,14,15,9,5,13,25,31,30,54,55,53,27,31,61,63,62,58,59,31,28,20,23,
%U 43,42,46,47,45,23,15,29,31,30,18,19,11,6,14,27,51,50,62,63,61,31,55,109,111
%N Concatenation of run lengths in binary expansion of n, written in base 2, then converted to base 10.
%H Rémy Sigrist, <a href="/A175930/b175930.txt">Table of n, a(n) for n = 1..8192</a>
%F From _Rémy Sigrist_, Jul 02 2019: (Begin)
%F a(2^k-1) = k for any k > 0.
%F a(2^k) = A004755(k) for any k > 0.
%F (End)
%e 6 = 110, two runs, lengths 2 and 1, so we write down 101 and convert it to base 10, getting 5. So a(6) = 5.
%t f[n_] := FromDigits[Flatten[IntegerDigits[Length /@ Split[IntegerDigits[n, \ 2]], 2]], 2]
%t Array[f, NUMBER OF TERMS]
%o (PARI) a(n) = my (b=[]); while (n, my (x=valuation(n+(n%2), 2)); b = concat(binary(x), b); n \= 2^x); fromdigits(b, 2) \\ _Rémy Sigrist_, Jul 02 2019
%o (Python)
%o from itertools import groupby
%o def a(n):
%o c = "".join(bin(len(list(g)))[2:] for k, g in groupby(bin(n)[2:]))
%o return int(c, 2)
%o print([a(n) for n in range(1, 75)]) # _Michael S. Branicky_, Oct 02 2021
%Y Cf. A004755, A101211, A321226.
%K base,easy,look,nonn
%O 1,2
%A _Dylan Hamilton_, Oct 23 2010
%E Edited by _N. J. A. Sloane_, Oct 23 2010