%I #37 Jul 20 2019 13:55:39
%S 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,12,12,7,3,
%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,48,48,35,31,27,12,7,
%U 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,12,12,12,7,3,3,3,3
%N Size of the largest holes in the toothpick structure of A182840 after step n.
%C Each connected group of unoccupied lines in the hexagonal structure enclosed by toothpicks counts as a hole.
%H Olaf Voß, <a href="/A175797/b175797.txt">Table of n, a(n) for n = 0..625</a>
%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H Olaf Voß, <a href="/wiki/Toothpick_structures_on_hexagonal_net">Toothpick structures on hexagonal net</a>
%H <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a>
%e Structure after step 8:
%e \_/
%e \_/ \_/
%e \_/ \_/ \_/
%e \_/ _/ \_ \_/
%e / \_/ \_/ \_/ \
%e \_/ \_/ \_/ \_/
%e / \ / \_/ \ / \
%e \_/ \_/ \_/ \_/
%e / \_/ \_/ \_/ \
%e \_/ \_/ \_/ \_/
%e / \_ \_/ _/ \
%e / \_/ \_/ \
%e / \_/ \
%e / \
%e There are 6 holes in this structure, in each 1 toothpick is missing (size=1), so a(8)=1.
%Y For number of holes see A184408.
%K nonn
%O 0,16
%A _Olaf Voß_, Jan 13 2011