login
Size of the largest holes in the toothpick structure of A182840 after step n.
1

%I #37 Jul 20 2019 13:55:39

%S 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,12,12,7,3,

%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,48,48,35,31,27,12,7,

%U 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,12,12,12,7,3,3,3,3

%N Size of the largest holes in the toothpick structure of A182840 after step n.

%C Each connected group of unoccupied lines in the hexagonal structure enclosed by toothpicks counts as a hole.

%H Olaf Voß, <a href="/A175797/b175797.txt">Table of n, a(n) for n = 0..625</a>

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>

%H Olaf Voß, <a href="/wiki/Toothpick_structures_on_hexagonal_net">Toothpick structures on hexagonal net</a>

%H <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a>

%e Structure after step 8:

%e \_/

%e \_/ \_/

%e \_/ \_/ \_/

%e \_/ _/ \_ \_/

%e / \_/ \_/ \_/ \

%e \_/ \_/ \_/ \_/

%e / \ / \_/ \ / \

%e \_/ \_/ \_/ \_/

%e / \_/ \_/ \_/ \

%e \_/ \_/ \_/ \_/

%e / \_ \_/ _/ \

%e / \_/ \_/ \

%e / \_/ \

%e / \

%e There are 6 holes in this structure, in each 1 toothpick is missing (size=1), so a(8)=1.

%Y For number of holes see A184408.

%K nonn

%O 0,16

%A _Olaf Voß_, Jan 13 2011