login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) with the coefficient [x^m] of the polynomial x^(2*n) - x^(2*n - 1) - x^n - x + 1 in row n, column m, 1 <= m <= 2*n. T(0,0) = 1.
5

%I #15 Nov 03 2018 19:05:08

%S 1,1,-3,1,1,-1,-1,-1,1,1,-1,0,-1,0,-1,1,1,-1,0,0,-1,0,0,-1,1,1,-1,0,0,

%T 0,-1,0,0,0,-1,1,1,-1,0,0,0,0,-1,0,0,0,0,-1,1,1,-1,0,0,0,0,0,-1,0,0,0,

%U 0,0,-1,1,1,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,0,0,0

%N Triangle T(n,m) with the coefficient [x^m] of the polynomial x^(2*n) - x^(2*n - 1) - x^n - x + 1 in row n, column m, 1 <= m <= 2*n. T(0,0) = 1.

%C The polynomials up to n = 10 are Salem polynomials (the third lowest Salem in the table).

%H Michael Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a>

%H William J. Floyd, <a href="http://dx.doi.org/10.1007/BF01444729">Growth of planar Coxeter groups, P.V. numbers, and Salem numbers</a>, Math. Ann. Vol. 293 (1992), 475-483.

%F Sum_{m=0..2*n} T(n,m)= -1.

%F From _Franck Maminirina Ramaharo_, Nov 02 2018: (Start)

%F G.f.: (1 - 4*x*y + x*(2 + x + 2*x^2)*y^2 - x^2*(1 + x^2)*y^3)/((1 - y)*(1 - x*y)*(1 - x^2*y)).

%F E.g.f.: (-(1 - x)*exp(x^2*y) - x*exp(x*y) + x*(1 - x)*exp(y) + 1 + x^2)/x. (End)

%e The polynomial coefficients are

%e 1;

%e 1, -3, 1;

%e 1, -1, -1, -1, 1;

%e 1, -1, 0, -1, 0, -1, 1;

%e 1, -1, 0, 0, -1, 0, 0, -1, 1;

%e 1, -1, 0, 0, 0, -1, 0, 0, 0, -1, 1;

%e 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1;

%e 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1;

%e 1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 1;

%e 1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1;

%e 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1;

%e ...

%e The corresponding Mahler measures are

%e -----------------------------------------------------

%e n | M(p_n) || n | M(p_n)

%e -----------------------------------------------------

%e 1 | 1.7220838057390422450 || 6 | 1.2612309611

%e 2 | 1.5061356795538388 || 7 | 1.2363179318

%e 3 | 1.40126836793 || 8 | 1.21639166113826509

%e 4 | 1.337313210201 || 9 | 1.200026523

%e 5 | 1.293485953125 || 10 | 1.286735

%e ...

%t p[x_, n_] = If[n == 0, 1, x^(2*n) - x^(2*n - 1) - x^n - x + 1];

%t Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten

%o (Maxima) T(n, k) := if n = 0 and k = 0 then 1 else ratcoef(x^(2*n) - x^(2*n - 1) - x^n - x + 1, x, k)$

%o create_list(T(n, k), n, 0, 10, k, 0, 2*n); /* _Franck Maminirina Ramaharo_, Nov 02 2018 */

%Y Cf. A143439.

%K sign,easy,tabf

%O 0,3

%A _Roger L. Bagula_, Dec 04 2010