Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 04 2019 09:03:56
%S 0,1,2,0,3,0,1,0,0,0,4,0,1,0,0,0,5,0,1,0,0,0,1,0,0,0,0,0,2,0,1,0,0,0,
%T 0,0,1,0,0,0,9,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,2,0,1,0,0,0,0,0,1,0,
%U 0,0,2,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,6,0,1,0,0
%N Maximal run length of primes of the form n, n+2, n+2*3, n+2*3*5,..
%H Antti Karttunen, <a href="/A175663/b175663.txt">Table of n, a(n) for n = 1..16384</a>
%H Antti Karttunen, <a href="/A175663/a175663.txt">Data supplement: n, a(n) computed for n = 1..100000</a>
%F a(n) <= A175682(n). - _Antti Karttunen_, Jan 03 2019
%e a(107)=8 because 107=prime, 107+2=109=prime, 107+2*3=113=prime, 107+2*3*5=137=prime, 107+2*3*5*7=317=prime, 107+2*3*5*7*11=2417=prime, 107+2*3*5*7*11*13=30137=prime, 107+2*3*5*7*11*13*17=510617=prime.
%p A002110 := proc(n) option remember; mul(ithprime(i),i=1..n) ; end proc:
%p A175663 := proc(n) if isprime(n) then for p from 1 do if not isprime(n+A002110(p)) then return p ; end if; end do: else return 0 ; end if; end proc:
%p seq(A175663(n),n=1..120) ; # _R. J. Mathar_, Aug 07 2010
%t Array[If[PrimeQ@ #, Block[{s = {1}}, While[PrimeQ[# + Times @@ Prime@ s], AppendTo[s, s[[-1]] + 1]]; Last@ s], 0] &, 105] (* _Michael De Vlieger_, Jan 03 2019 *)
%o (PARI) A175663(n) = if(!isprime(n),0,my(pr=2); for(k=1, oo, if(!isprime(pr+n), return(k)); pr *= prime(1+k))); \\ _Antti Karttunen_, Jan 03 2019
%Y Cf. A006512 (greater of twin primes), A175612 (list of twin semiprimes), A175648 (lesser of twin semiprimes).
%Y Cf. also A175682.
%K nonn
%O 1,3
%A Vladislav-Stepan Malakovsky & _Juri-Stepan Gerasimov_, Aug 04 2010