login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the upper limit x such that Integral_{u=0..Pi*x} u*cot(u) du = 0.
0

%I #9 Jun 27 2023 15:08:09

%S 7,9,1,2,2,6,5,7,1,0,4,7,6,6,6,2,4,3,4,3,5,6,9,7,3,1,7,6,8,0,1,1,6,7,

%T 7,1,0,7,8,6,4,6,1,5,5,3,3,7,8,5,4,0,7,3,0,7,5,0,5,2,4,5,3,9,4,3,1,7,

%U 2,1,3,6,7,6,6,3,9,0,8,9,9,6,3,5,6,1,0,9,7,4,2,8,6,1,6,1,3,6,3,8,5,4,4,5,0

%N Decimal expansion of the upper limit x such that Integral_{u=0..Pi*x} u*cot(u) du = 0.

%C Because the integral from u=0 up to u=Pi/2 equals log(2)*Pi/2 = A086054/2, this is also the x such that Integral_{u=Pi/2..Pi*x} u*cot(u) du = -log(2)*Pi/2. By partial integration, Integral_{u} u*cot(u) du = u*log(sin(u)) - Integral_{u} log(sin(u)) du, used with a Newton method in the Maple implementation.

%H G. Freiman and H. Halberstam, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa49/aa4944.pdf">On a product of sines</a>, Acta Arithmetica 49 issue 4 (1987) 377-385.

%e x = 0.7912265710...

%p intu := proc(u) u*log(sin(u)) - int( log(sin(t)),t=Pi/2..u) ; evalf(%) ; end proc:

%p Digits := 80 : x := 0.79122 :

%p for it from 1 to 10 do x0 := intu(evalf(Pi*x))+Pi*log(2)/2 ; xnew := x-evalf(x0)/Pi^2/x/cot(Pi*x) ; x := evalf(xnew) ; print(x) ; end do:

%t First@ RealDigits@ Re[ FindRoot[ Integrate[ u*Cot[u], {u, 0, x*Pi}], {x, 0.7}, WorkingPrecision -> 2^7][[1, 2]]] (* _Robert G. Wilson v_, Aug 03 2010 *)

%K cons,nonn

%O 0,1

%A _R. J. Mathar_, Aug 01 2010

%E More terms from _Robert G. Wilson v_, Aug 03 2010