%I #8 Nov 21 2013 12:50:02
%S 2,3,5,7,11,13,17,23,31,41,43,53,61,71,101,103,107,109,113,127,131,
%T 151,163,181,211,223,227,233,241,251,263,271,307,311,313,317,331,353,
%U 401,409,421,431,433,443,503,509,521,523,541,601,607,613,617,631,701,709
%N Prime numbers p with property that sums of neighbor digits of p are all less than 10.
%e Sum of neighbor digits of 29 = 11 > 10 hence 29 is absent.
%e Sum of neighbor digits 3+7 of 137 is 10 hence 137 is absent.
%t s={2,3,5,7};Do[p=Prime[n];id=IntegerDigits[p];rp=Rest[id]+Most[id];
%t If[Max[rp]<10,AppendTo[s,p]],{n,5,300}];s
%t Select[Prime[Range[150]],Max[Total/@Partition[IntegerDigits[#],2,1]] <10&] (* _Harvey P. Dale_, Dec 04 2011 *)
%Y Cf. A175585 Sums of neighbor digits of n^2 are all less than 10.
%K base,nonn
%O 1,1
%A _Zak Seidov_, Jul 16 2010