OFFSET
1,2
COMMENTS
The sequence satisfies an almost recurrence relation, that is, there are 4 sequences b_0, b_1, b_2, b_3 taking values in {-2,-1,1,2} such that 2b_0(n)a(n) + 2b_1(n)a(n+1) + b_2(n)a(n+2) + b_3(n)a(n+3) = 0. For instance, we have a(103) - a(102) - 2a(101) + 2a(100) = 0, 2a(106) - a(105) - 4a(104) + 2a(103) = 0. - Benoit Cloitre, Oct 16 2012
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = ceiling(sqrt(2)*a(n-1)) with a(1)=1. - Benoit Cloitre, Oct 16 2012
MATHEMATICA
NestList[Floor[Sqrt[2#^2]]+1&, 1, 50] (* Harvey P. Dale, Oct 19 2014 *)
PROG
(PARI) a=1; s=[a]; for(i=2, 100, a=1+sqrtint(2*a^2); s=concat(s, a)); s
(PARI) a(n)=if(n<2, 1, floor(sqrt(2)*a(n-1))) \\ Benoit Cloitre, Oct 16 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 14 2010
STATUS
approved