login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175539
a(1)=1, then a(n) = smallest number whose square is larger than 2*(a(n-1))^2.
1
1, 2, 3, 5, 8, 12, 17, 25, 36, 51, 73, 104, 148, 210, 297, 421, 596, 843, 1193, 1688, 2388, 3378, 4778, 6758, 9558, 13518, 19118, 27037, 38237, 54076, 76476, 108154, 152953, 216309, 305908, 432620, 611818, 865242, 1223637, 1730485, 2447276, 3460971
OFFSET
1,2
COMMENTS
The sequence satisfies an almost recurrence relation, that is, there are 4 sequences b_0, b_1, b_2, b_3 taking values in {-2,-1,1,2} such that 2b_0(n)a(n) + 2b_1(n)a(n+1) + b_2(n)a(n+2) + b_3(n)a(n+3) = 0. For instance, we have a(103) - a(102) - 2a(101) + 2a(100) = 0, 2a(106) - a(105) - 4a(104) + 2a(103) = 0. - Benoit Cloitre, Oct 16 2012
LINKS
FORMULA
a(n) = ceiling(sqrt(2)*a(n-1)) with a(1)=1. - Benoit Cloitre, Oct 16 2012
MATHEMATICA
NestList[Floor[Sqrt[2#^2]]+1&, 1, 50] (* Harvey P. Dale, Oct 19 2014 *)
PROG
(PARI) a=1; s=[a]; for(i=2, 100, a=1+sqrtint(2*a^2); s=concat(s, a)); s
(PARI) a(n)=if(n<2, 1, floor(sqrt(2)*a(n-1))) \\ Benoit Cloitre, Oct 16 2012
CROSSREFS
Cf. A087057 (smallest number whose square is larger than 2*n^2).
Sequence in context: A318028 A373296 A200661 * A260795 A111388 A127884
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 14 2010
STATUS
approved