login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000120-perfect numbers.
27

%I #49 Feb 25 2021 21:19:18

%S 2,25,95,111,119,123,125,169,187,219,221,247,289,335,365,411,415,445,

%T 485,493,505,629,655,685,695,697,731,767,815,841,871,943,949,965,985,

%U 1003,1139,1207,1241,1261,1263,1273,1343,1387,1465,1469,1507,1513,1529,1563

%N A000120-perfect numbers.

%C Let A(n), n>=1, be an infinite positive sequence.

%C We call a number n:

%C A-deficient if Sum{d|n, d<n} A(d) < A(n),

%C A-abundant if Sum{d|n, d<n} A(d) > A(n),

%C and

%C A-perfect if Sum{d|n, d<n} A(d) = A(n),

%C depending on the sum over the proper divisors of n.

%C The definition generalizes the standard nomenclature of deficient (A005100), abundant (A005101) and perfect numbers (A000396), which is recovered by setting A(n) = n = A000027(n).

%C Conjecture: if there exist infinitely many A-deficient numbers and infinitely many A-abundant numbers, then there exist infinitely many A-perfect numbers.

%C Note that the sequence contains squares of all Fermat primes larger than 3 (see A019434). [This would also hold for squares of any hypothetical Fermat primes after the fifth one, 65537. Comment clarified by _Antti Karttunen_, May 14 2015]

%C A192895(a(n)) = 0. - _Reinhard Zumkeller_, Jul 12 2011

%H Amiram Eldar, <a href="/A175522/b175522.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Reinhard Zumkeller)

%e Proper divisors of 119 are 1,7,17. Since A000120(1)+A000120(7)+A000120(17)=A000120(119), then 119 is in the sequence.

%t binw[n_] := DigitCount[n, 2, 1]; Select[Range[1500], binw[#] == DivisorSum[#, binw[#1] &]/2 &] (* _Amiram Eldar_, Dec 14 2020 *)

%o (Sage) A000120 = lambda x: x.digits(base=2).count(1)

%o is_A175522 = lambda x: sum(A000120(d) for d in divisors(x)) == 2*A000120(x)

%o A175522 = filter(is_A175522, IntegerRange(1, 10**4))

%o # _D. S. McNeil_, Dec 04 2010

%o (Haskell)

%o import Data.List (elemIndices)

%o a175522 n = a175522_list !! (n-1)

%o a175522_list = map (+ 1) $ elemIndices 0 a192895_list

%o -- _Reinhard Zumkeller_, Jul 12 2011

%o (PARI) is(n)=sumdiv(n,d,hammingweight(d))==2*hammingweight(n) \\ _Charles R Greathouse IV_, Jan 28 2016

%o (Python)

%o from sympy import divisors

%o def A000120(n): return bin(n).count('1')

%o def aupto(limit):

%o alst = []

%o for m in range(1, limit+1):

%o if A000120(m) == sum(A000120(d) for d in divisors(m)[:-1]): alst += [m]

%o return alst

%o print(aupto(1563)) # _Michael S. Branicky_, Feb 25 2021

%Y Cf. A175524 (deficient version), A175526 (abundant version), A000120, A000396.

%Y Subsequence of A257691 (non-abundant version).

%Y Positions of zeros in A192895.

%Y Cf. A019434, A253204.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Dec 03 2010

%E More terms from _Amiram Eldar_, Feb 18 2019