login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonprimes k such that 9*k divides 2^(k-1) - 1.
1

%I #40 Jun 27 2024 09:01:24

%S 1,1105,1387,1729,2047,2701,2821,3277,4033,4369,4681,5461,6601,7957,

%T 8911,10261,10585,11305,13741,13747,13981,14491,15709,15841,16705,

%U 18721,19951,23377,29341,30121,30889,31417,31609,31621,34945,39865,41041,41665,42799,46657,49141,49981

%N Nonprimes k such that 9*k divides 2^(k-1) - 1.

%C Original name was: Nonprimes n of the form 6m+1 such that (2^(n-1) mod n)=(4^(n-1) mod n)=(8^(n-1) mod n)=..=(k^(n-1) mod n) for k=2,4,8,..,smallest power of 2>n.

%H Vincenzo Librandi and T. D. Noe, <a href="/A175521/b175521.txt">Table of n, a(n) for n = 1..1000</a>

%e 1 is a term because it is a nonprime and 9*1 = 9 divides 2^(1-1) - 1 = 0.

%t n = 1; t = {}; While[Length[t] < 100, While[PrimeQ[n] || PowerMod[2, n-1, 9*n] != 1, n = n + 2]; AppendTo[t, n]; n = n + 2]; t (* _T. D. Noe_, Jul 25 2011 *)

%o (PARI) p=0;forprime(q=2,1e5,for(n=p+1,q-1,if(Mod(2,9*n)^(n-1)==1,print1(n", ")));p=q) \\ _Charles R Greathouse IV_, Jul 24 2011

%Y Subsequence of A001567.

%Y Cf. A000079, A091300.

%K nonn

%O 1,2

%A _Juri-Stepan Gerasimov_, Dec 18 2010

%E Name changed by _Arkadiusz Wesolowski_, Jul 23 2011