Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Oct 18 2024 17:27:06
%S 1,2,4,3,6,10,5,11,7,12,9,16,8,17,15,23,13,24,18,28,14,26,19,32,20,34,
%T 21,36,25,41,22,39,30,48,27,46,29,49,31,52,37,59,33,56,40,64,35,60,38,
%U 65,42,68,43,71,44,73,45,75,51,82,47,79,112,50,84,53,88,54,90,57,94,55,93,61,100,58,98,62,103,63,105,67
%N a(1)=1. a(n) = the smallest positive integer not occurring earlier such that a(n)-a(n-1) doesn't equal a(k)-a(k-1) for any k with 2 <= k <= n-1.
%C This sequence is a permutation of the positive integers.
%C a(n+1)-a(n) = A175499(n).
%C Conjecture: the lexicographically earliest permutation of {1,2,...n} for which differences of adjacent numbers are all distinct (cf. A131529) has, for n-->infinity, this sequence as its prefix. - _Joerg Arndt_, May 27 2012
%H Joerg Arndt and Reinhard Zumkeller, <a href="/A175498/b175498.txt">Table of n, a(n) for n = 1..10000</a>, first 1122 terms from Joerg Arndt
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%t a[1] = 1; d[1] = 0; k = 1; z = 10000; zz = 120;
%t A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
%t c[k_] := Complement[Range[-z, z], diff[k]];
%t T[k_] := -a[k] + Complement[Range[z], A[k]];
%t Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {i, 1, zz}];
%t u = Table[a[k], {k, 1, zz}] (* _Clark Kimberling_, May 13 2015 *)
%o (Python)
%o A175498_list, l, s, b1, b2 = [1,2], 2, 3, set(), set([1])
%o for n in range(3, 10**5):
%o i = s
%o while True:
%o if not (i in b1 or i-l in b2):
%o A175498_list.append(i)
%o b1.add(i)
%o b2.add(i-l)
%o l = i
%o while s in b1:
%o b1.remove(s)
%o s += 1
%o break
%o i += 1 # _Chai Wah Wu_, Dec 15 2014
%o (Haskell)
%o import Data.List (delete)
%o a175498 n = a175498_list !! (n-1)
%o a175498_list = 1 : f 1 [2..] [] where
%o f x zs ds = g zs where
%o g (y:ys) | diff `elem` ds = g ys
%o | otherwise = y : f y (delete y zs) (diff:ds)
%o where diff = y - x
%o -- _Reinhard Zumkeller_, Apr 25 2015
%Y Cf. A081145, A175499, A257465 (inverse), A257883, A131388, A131389, A257705.
%K nonn,nice
%O 1,2
%A _Leroy Quet_, May 31 2010
%E More terms from _Sean A. Irvine_, Jan 27 2011