login
Positive integers k where k is not squarefree but the number of divisors of k is a power of 2.
4

%I #26 Jan 05 2023 03:14:22

%S 8,24,27,40,54,56,88,104,120,125,128,135,136,152,168,184,189,216,232,

%T 248,250,264,270,280,296,297,312,328,343,344,351,375,376,378,384,408,

%U 424,440,456,459,472,488,513,520,536,552,568,584,594,616,621,632,640

%N Positive integers k where k is not squarefree but the number of divisors of k is a power of 2.

%C This sequence is not the same as sequence A048109.

%C The asymptotic density of this sequence is A327839 - A059956 = 0.0799000375... - _Amiram Eldar_, Nov 01 2020

%H Amiram Eldar, <a href="/A175496/b175496.txt">Table of n, a(n) for n = 1..10000</a>

%t pow2Q[n_] := n == 2^IntegerExponent[n, 2]; aQ[n_] := ! SquareFreeQ[n] && pow2Q[DivisorSigma[0, n]]; Select[Range[640], aQ] (* _Amiram Eldar_, Sep 21 2019 *)

%o (PARI) isok(k) = my(d=numdiv(k)); !issquarefree(k) && (2^valuation(d, 2) == d); \\ _Michel Marcus_, Nov 20 2020

%o (Python)

%o from itertools import count, islice

%o from sympy import factorint

%o def A175496_gen(startvalue=2): # generator of terms >= startvalue

%o return filter(lambda n:max(f:=factorint(n).values())>1 and all(map(lambda m:not((k:=m+1)&-k)^k,f)),count(max(startvalue,2)))

%o A175496_list = list(islice(A175496_gen(),30)) # _Chai Wah Wu_, Jan 04 2023

%Y Cf. A059956, A327839.

%Y Complement of A005117 within A036537.

%Y Subsequence of A013929.

%Y A048109, A062838\{1}, A113852 are subsequences.

%K nonn

%O 1,1

%A _Leroy Quet_, May 30 2010

%E Extended by _D. S. McNeil_, May 31 2010