login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175322
a(n) = A053141(n)*A001109(n+1) = Sum_{k=A053141(n)+1..A001109(n+1)-1} k.
1
12, 490, 17136, 584988, 19889100, 675741430, 22955884992, 779827644120, 26491203224556, 899921193951778, 30570830043692400, 1038508304094967860, 35278711531352926572, 1198437683891107427950, 40711602541519349266176, 1382996048732155862584368
OFFSET
1,1
COMMENTS
Solution to a*b = (b*(b-1) - a*(a+1))/2 in A000027 with a,b >= 2.
FORMULA
From Colin Barker, Mar 31 2018: (Start)
G.f.: 2*x*(2 - x)*(3 + x) / ((1 - x)*(1 - 34*x + x^2)*(1 - 6*x + x^2)).
a(n) = 41*a(n-1) - 246*a(n-2) + 246*a(n-3) - 41*a(n-4) + a(n-5) for n>5.
(End)
a(n) = (1 - 8*U(n, 3) + 7*U(n, 17) + U(n-1, 17)) / 16 where U(n, x) is the Chebyshev polynomial of the second kind. - Michael Somos, Jul 18 2018
EXAMPLE
A053141(1) = 2 and A001109(2) = 6, then 2*6 = 3+4+5 = 12, is a term.
A053141(2) = 14 and A001109(3) = 35, then 14*35 = 15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34 = 490, is a term.
G.f. = 12*x + 490*x^2 + 17136*x^3 + 584988*x^4 + 19889100*x^5 + ... - Michael Somos, Jul 18 2018
MATHEMATICA
lst={}; k=1; j=0; s=1; Do[a=6*k-j; p=2*s*a; s=s+a; AppendTo[lst, p]; j=k; k=a, {n, 1, 16}]; lst
LinearRecurrence[{41, -246, 246, -41, 1}, {12, 490, 17136, 584988, 19889100}, 30] (* G. C. Greubel, Jul 15 2018 *)
a[ n_] := (1 - 8 ChebyshevU[n, 3] + 7 ChebyshevU[n, 17] + ChebyshevU[n - 1, 17]) / 16; (* Michael Somos, Jul 18 2018 *)
PROG
(PARI) Vec(2*x*(2 - x)*(3 + x) / ((1 - x)*(1 - 34*x + x^2)*(1 - 6*x + x^2)) + O(x^20)) \\ Colin Barker, Mar 31 2018
(PARI) {a(n) = if( n>0, polcoeff( 2*x * (2 - x)*(3 + x) / ((1 - x)*(1 - 34*x + x^2)*(1 - 6*x + x^2)) + x * O(x^n), n), n=-n; polcoeff( -2*x^2 * (1-2*x)*(1+3*x) / ((1 - x)*(1 - 34*x + x^2)*(1 - 6*x + x^2)) + x * O(x^n), n))}; /* Michael Somos, Jul 18 2018 */
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*x*(2-x)*(3+x)/((1-x)*(1-34*x+x^2)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
CROSSREFS
Sequence in context: A344113 A229634 A196704 * A297651 A296596 A196853
KEYWORD
nonn,easy
AUTHOR
Manuel Valdivia, Apr 03 2010
EXTENSIONS
Definition simplified by N. J. A. Sloane, Apr 05 2010
STATUS
approved