Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Feb 03 2023 20:42:36
%S 2,3,5,18713,5,683747,17,98303867,13,60335249851,137,1169769749111,
%T 8021749,3945769040698829,1071065111,159067808851610411,1613902553
%N a(n) = the smallest prime prime(k) such that prime(k+j) - prime(k+j-1) = prime(n+k+1-j) - prime(n+k-j) for all j with 1 <= j <= n.
%C From _M. F. Hasler_, Apr 02 2010: (Start)
%C Also: Start of the first sequence of n+1 consecutive primes symmetrically distributed w.r.t. their barycenter, e.g., [2,3], [3,5,7], [5,7,11,13], [18713, 18719, 18731, 18743, 18749]. With this definition, it would make sense to prefix the sequence with an initial term a(0)=2.
%C Sequence A081235 (or A055382, which is essentially the same) consists of every other term of this sequence. (End)
%C a(19) = 1797595814863, a(21) = 633925574060671, a(23) = 22930603692243271. - _Tomáš Brada_, May 25 2020
%H <a href="/A175309/b175309.txt">Table of n, a(n) for n = 1..17</a>
%H <a href="http://stop.inferia.ru/">BOINC project</a> to search all up to 2^64
%F a(2n-1) = A081235(n) (= A055382(n) for n>1). - _M. F. Hasler_, Apr 02 2010
%t A175309[n_] := Module[{k},
%t k = 1; While[! AllTrue[Range[n], Prime[k+#] - Prime[k+#-1] ==
%t Prime[n+k+1-#] - Prime[n+k-#] &], k++]; Return[Prime[k]]];
%t Table[A175309[n], {n, 1, 7}] (* _Robert Price_, Mar 27 2019 *)
%o (PARI) a(n)={ my( last=vector(n++,i,prime(i)), m, i=Mod(n-2,n)); forprime(p=last[n],default(primelimit), m=last[1+lift(i+2)]+last[1+lift(i++)]=p; for( j=1,n\2, last[1+lift(i-j)]+last[1+lift(i+j+1)]==m || next(2)); return( last[1+lift(i+1)])) } \\ _M. F. Hasler_, Apr 02 2010
%o (PARI) isok(p, n) = {my(k=primepi(p)); for (j=1, n, if (prime(k+j) - prime(k+j-1) != prime(n+k+1-j) - prime(n+k-j), return (0));); return (1);} \\ _Michel Marcus_, Apr 08 2017
%Y Cf. A006562, A051795, A081235, A081415, A096710, A055382.
%K nonn,more
%O 1,1
%A _Leroy Quet_, Mar 27 2010
%E Terms through a(12) were calculated by (in alphabetical order) _Franklin T. Adams-Watters_, _Hans Havermann_ and _D. S. McNeil_
%E Minor edits by _N. J. A. Sloane_, Apr 02 2010
%E a(14) from _Dmitry Petukhov_, added by _Max Alekseyev_, Nov 03 2014
%E a(16) from BOINC project, added by _Dmitry Petukhov_, Apr 06 2017