login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175257
a(n) is the smallest prime p such that 2^(p-1) == 1 (mod a(1)*...*a(n-1)*p).
2
3, 5, 13, 37, 73, 109, 181, 541, 1621, 4861, 9721, 19441, 58321, 87481, 379081, 408241, 2041201, 2449441, 7348321, 14696641, 22044961, 95528161, 382112641, 2292675841, 8024365441, 40121827201, 481461926401, 722192889601, 2888771558401, 7944121785601, 55608852499201, 111217704998401, 889741639987201, 1779483279974401
OFFSET
1,1
COMMENTS
Conjecture: a(n) is the smallest integer k > 1 such that 2^(k-1) == 1 (mod a(0)*...*a(n-1)*k), with a(0) = 1. - Thomas Ordowski, Mar 13 2019
Either a(n) > a(n-1), or a(n) = a(n-1) is a Wieferich prime (A001220). - Max Alekseyev, Sep 29 2024
LINKS
MATHEMATICA
i=1; Do[p=Prime[n]; If[Mod[2^(p-1)-1, p*i]==0, Print[p]; i=p*i], {n, 2, 78498}]
PROG
(PARI) findprime(prd) = {forprime(p=2, , if (Mod(2, p*prd)^(p-1) == 1, return (p)); ); }
lista(nn) = {my(prd = 1, na); for (n=1, nn, na = findprime(prd); print1(na, ", "); prd *= na; ); } \\ Michel Marcus, Mar 14 2019
(PARI) { a175257_first_terms(N=1000) = my(P, L, t); P=[3]; L=2; for(n=#P, N, print(n, " ", P[n]); forstep(p=P[n], oo, Mod(1, L), if(p==P[n], if(Mod(2, p^2)^(p-1)==1, error("Wieferich prime!"), next)); if(ispseudoprime(p), P=concat(P, [p]); t=Mod(2, p)^L; fordiv((p-1)\L, d, if(t^d==1, L*=d; break)); break))); P; } \\ Max Alekseyev, Sep 29 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Manuel Valdivia, Mar 15 2010
EXTENSIONS
a(17)-a(26) from Amiram Eldar, Feb 03 2019
Name corrected by Thomas Ordowski, Mar 13 2019
a(27) from Hans Havermann, Mar 29 2019
Eliminated a(0)=1 in the definition (empty products equal 1). - R. J. Mathar, Jun 19 2021
Terms a(28) onward from Max Alekseyev, Sep 29 2024
STATUS
approved