login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The smallest prime divisor of 1 + 2^2 + 3^3 + ... + n^n.
1

%I #7 Feb 04 2020 03:57:58

%S 5,2,2,3413,50069,2,2,7,10405071317,2,2,88799,3,2,2,3,3,2,2,5,3,2,2,3,

%T 7,2,2,7,208492413443704093346554910065262730566475781,2,2,3,17,2,2,5,

%U 61,2,2,71,11,2,2,11,7,2,2,5,3,2,2,3,3,2,2,23,3,2,2,3,44818693,2,2,5

%N The smallest prime divisor of 1 + 2^2 + 3^3 + ... + n^n.

%F a(n) = A020639(A001923(n)).

%e a(2) = 5 divides 1 + 2^2.

%e a(3) = 2 divides 1 + 2^2 + 3^3 = 32.

%e a(4) = 2 divides 1 + 2^2 + 3^3 + 4^4 = 288.

%e a(5) = 3413 divides 1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413.

%e a(13) = 88799 divides 1 + 2^2 + 3^3 + ... + 13^13 = 88799 * 3514531963.

%p with(numtheory): s :=1: for n from 2 to 60 do ;s := s+ n^n: s1 := ifactors(s)[2] : s2 :=s1[i][1], i=1..nops(s1):print(s1[1][1]):od:

%t a[n_] := FactorInteger[Sum[k^k, {k, 1, n}]][[1, 1]]; Array[a, 20, 2] (* _Amiram Eldar_, Feb 04 2020 *)

%Y Cf. A073826, A122166.

%K nonn

%O 2,1

%A _Michel Lagneau_, Mar 09 2010

%E Edited by _R. J. Mathar_, Mar 16 2010

%E a(61)-a(65) from _Amiram Eldar_, Feb 04 2020