login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The fifth nonprimes after the primes.
2

%I #6 Jul 05 2016 19:12:35

%S 10,10,12,14,18,20,24,25,28,35,36,44,48,49,52,58,65,66,74,77,78,85,88,

%T 94,104,108,110,114,115,118,133,136,143,144,155,156,162,169,172,178,

%U 185,186,198,200,203,204,216,230,234,235,238,245,246,256,262,268,275

%N The fifth nonprimes after the primes.

%C From _Robert Israel_, Jul 05 2016: (Start)

%C For n>1, there are the following cases:

%C If prime(n)+2 and prime(n)+4 are composite, then a(n) = prime(n)+5.

%C If exactly one of prime(n)+2 and prime(n)+4 is prime, and prime(n)+6 is composite, then a(n) = prime(n) + 6.

%C Otherwise, a(n) = prime(n) + 7. (End)

%H Robert Israel, <a href="/A175220/b175220.txt">Table of n, a(n) for n = 1..10000</a>

%p N:= 1000: # to get all entries <= N

%p Primes:= select(isprime, [2,seq(i,i=3..N+7,2)]):

%p nprimes:= nops(Primes):

%p A[1]:= 10:

%p A[2]:= 10:

%p for i from 3 to nprimes-1 do

%p p:= Primes[i];

%p if p + 5 > N then break fi;

%p if Primes[i+1] > p + 4 then A[i]:= p + 5

%p elif (i = nprimes-1 or Primes[i+2] <> p+6) and p+6 <= N then A[i]:= p + 6

%p elif p+7 <= N then A[i]:= p + 7

%p else break

%p fi

%p od:

%p seq(A[j],j=1..i-1); # _Robert Israel_, Jul 05 2016

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Mar 06 2010