login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = d(p(n)-1) + d(p(n)+1), where p(n) is the n-th prime, and where d(m) is the number of divisors of m.
6

%I #23 Apr 17 2024 02:34:15

%S 3,5,7,8,10,10,11,12,12,14,14,13,16,14,14,14,16,16,14,20,16,18,16,20,

%T 18,17,16,16,20,18,20,20,16,20,18,20,16,16,20,14,22,26,22,18,21,24,22,

%U 20,16,20,20,28,26,26,17,20,22,26,16,24,14,18,24,24,20,14,22,26,16,24,20

%N a(n) = d(p(n)-1) + d(p(n)+1), where p(n) is the n-th prime, and where d(m) is the number of divisors of m.

%C If a(n) is a record, then the n-th prime is in sequence A090481.

%H T. D. Noe, <a href="/A175144/b175144.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000005(A006093(n)) + A000005(A008864(n)). - _R. J. Mathar_, Mar 03 2010

%p taudiff := proc(n) numtheory[tau](n-1)+numtheory[tau](n+1) ; end proc: A175144 := proc(n) taudiff(ithprime(n)) ; end proc: seq(A175144(n),n=1..80) ; # _R. J. Mathar_, Mar 03 2010

%t Table[p = Prime[n]; DivisorSigma[0, p - 1] + DivisorSigma[0, p + 1], {n, 100}]

%t Total[DivisorSigma[0,{#-1,#+1}]]&/@Prime[Range[80]] (* _Harvey P. Dale_, Feb 25 2012 *)

%o (PARI) a(n) = numdiv(prime(n)-1) + numdiv(prime(n)+1); \\ _Amiram Eldar_, Apr 17 2024

%o (PARI) lista(pmax) = forprime(p = 1, pmax, print1(numdiv(p-1) + numdiv(p+1), ", ")); \\ _Amiram Eldar_, Apr 17 2024

%Y Cf. A000005, A006093, A008864, A090481, A090482, A175146.

%K nonn

%O 1,1

%A _Leroy Quet_, Feb 24 2010

%E More terms from _R. J. Mathar_, Mar 03 2010