OFFSET
0,1
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
a(2n) = a(2n+1) = A017114(n).
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5). - R. J. Mathar, Dec 02 2010
G.f.: ( -16-96*x^2-16*x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Dec 02 2010
From Colin Barker, Jan 26 2016: (Start)
a(n) = 8*(2*n^2+2*(-1)^n*n+2*n+(-1)^n+1).
a(n) = 16*n^2+32*n+16 for n even.
a(n) = 16*n^2 for n odd. (End)
a(n) = (8*floor(n/2)+4)^2. [Bruno Berselli, Jan 26 2016]
PROG
(PARI) Vec((-16-96*x^2-16*x^4)/((1+x)^2*(x-1)^3) + O(x^100)) \\ Colin Barker, Jan 26 2016
CROSSREFS
KEYWORD
nonn,less,easy
AUTHOR
Paul Curtz, Dec 02 2010
STATUS
approved