login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174986
Numerator coefficients of an infinite sum polynomial:p(x,n)=Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k* Sqrt[5]))^n*x^k, {k, 0, Infinity}]
0
-2, -1, 1, 5, -10, -5, -2, 8, 8, -2, -10, 70, 160, -70, -10, -1, 12, 53, -53, -12, 1, 20, -400, -3320, 6360, 3320, -400, -20, -2, 66, 984, -3568, -3568, 984, 66, -2, -10, 540, 14130, -92880, -178400, 92880, 14130, -540, -10, -4, 352, 15840, -184932, -654016
OFFSET
1,1
COMMENTS
Row sums are:
{-2, 0, -10, 12, 140, 0, 5560, -5040, -150160, 0,...}.
The result seems to be a beta integer version of a Eulerian infinite sum.
FORMULA
p(x,n)=Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k* Sqrt[5]))^n*x^k, {k, 0, Infinity}] out_n,m=Numerator_coefficients(p(x,n)/x)/2^(1 + Floor[n/2])
EXAMPLE
{-2},
{-1, 1},
{5, -10, -5},
{-2, 8, 8, -2},
{-10, 70, 160, -70, -10},
{-1, 12, 53, -53, -12, 1},
{20, -400, -3320, 6360, 3320, -400, -20},
{-2, 66, 984, -3568, -3568, 984, 66, -2},
{-10, 540, 14130, -92880, -178400, 92880, 14130, -540, -10},
{-4, 352, 15840, -184932, -654016, 654016, 184932, -15840, -352, 4}
MATHEMATICA
p[x_, n_] = Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k*Sqrt[5]))^n*x^k, {k, 0, Infinity}];
Flatten[Table[CoefficientList[FullSimplify[Numerator[p[x, n]]/x], x]/2^(1 + Floor[n/2]), {n, 1, 10}]]
CROSSREFS
Sequence in context: A098315 A006704 A324960 * A375321 A327671 A036563
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Apr 03 2010
STATUS
approved