login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174978
For definition see comments lines.
0
1, 2, 1, 5, 2, 2, 1, 20, 2, 5, 2, 5, 2, 2, 1, 95, 2, 5, 2, 20, 2, 5, 2, 20, 2, 5, 2, 5, 2, 2, 1, 470, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 20, 2, 5, 2, 5, 2, 2, 1, 2345, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 470, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2
OFFSET
0,2
COMMENTS
It is easier to explain the rule of recurrence when the numbers are written as follows:
1,
2, 1,
5, 2, 2, 1,
20, 2, 5, 2, 5, 2, 2, 1,
95, 2, 5, 2, 20, 2, 5, 2, 20, 2, 5, 2, 5, 2, 2, 1,
470, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 20, 2, 5, 2, 5, 2, 2, 1,
2345, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 470, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 470,
2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 20, 2, 5, 2, 5, 2, 2, 1.
At first a(2^(n+1)-1) = (3*5^n+5)/4 (n>=0). Let A be the sequence defined as follows:
A(0)=2; W(A(0))=5; A(1)=A(0),W(A(0))=2, 5; W(A(1))=2, 20.
More generally with A(n)=B(n), {3*5^n+5)/4; we define W(A(n))=B(n), (3*5^(n+1)+5)/4 and A(n+1)=A(n), W(A(n)).
Here we obtain A(1)=2, 5; W(A(1))=2, 20; A(2)=2, 5, 2, 20; W(A(2))=2, 5, 2, 95; A(3)=2, 5, 2, 20, 2, 5, 2, 95;
W(A(3))=2, 5, 2, 20, 2, 5, 2, 470; A(4)=2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, 470, etc.
In fact: B(1)=2; B(2)=2, 5, 2; B(3)=2, 5, 2, 20, 2, 5, 2; B(4)=2, 5, 2, 20, 2, 5, 2, 95, 2, 5, 2, 20, 2, 5, 2, etc.
If we denote by <<A|UA|>> the subsequence of a between a(2^(n+1)-1) and a(2^(n+2)-1), the subsequence of a between a(2^(n+2)-1) and a(2^(n+3)-1) is given by <<A|A(n+1), A(n+1), UA|>>.
It seems that this sequence gives the numbers of 1 in the successive sets of 1 in the sequence A174835.
EXAMPLE
a(1)=a(2^1-1)=(3*5^0+5)/4=2. a(3)=a(2^2-1)=(3*5+5)/4=5.
a(7)=a(2^3-1)=(75+5)/4=20. a(15)=a(2^4-1)=(3*125+5)/4=380/4=95.
Between 20 and 95 the subsequence of a is: 2, 5, 2, 5, 2, 2, 1.
Then with the definition, the subsequence of a, between 95 and 470 is:
A(2), A(2), 2, 5, 2, 5, 2, 2, 1, i.e., 2, 5, 2, 20, 2, 5, 2, 20, 2, 5, 2, 5, 2, 2, 1.
CROSSREFS
Sequence in context: A308698 A308569 A350073 * A110874 A010253 A065274
KEYWORD
easy,nonn,uned
AUTHOR
Richard Choulet, Apr 03 2010
STATUS
approved