login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174959
G.f.: x^3*(2*x-1) / ((1-x)*(1-x-x^2)*(1-2*x^2)).
1
0, 0, 0, -1, 0, -2, 1, -2, 6, 3, 24, 26, 81, 106, 250, 355, 732, 1086, 2073, 3158, 5742, 8899, 15664, 24562, 42273, 66834, 113202, 180035, 301428, 481462, 799273, 1280734, 2112774, 3393507, 5571816, 8965322, 14668209, 23633530, 38563882, 62197411, 101285580
OFFSET
0,6
REFERENCES
Burton, David M., Elementary number theory, McGraw Hill, N.Y., 2002, p. 286
FORMULA
a(n) = Sum_{j=0..floor((n-1)/2)} (-2^j + binomial(n-j-1, j)).
a(n) = Fibonacci(n+1) - 2^ceiling(n/2) - 1.
a(n) = A000045(n+1) - A016116(n+1) - 1.
a(n) = 2*a(n-1) + 2*a(n-2) - 5*a(n-3) + 2*a(n-5) for n^5. - Colin Barker, Dec 01 2019
MATHEMATICA
Table[Sum[-2^(j) +
Binomial[n - j - 1, j], {j, 0, Floor[(n - 1)/2]}], {n, 0, 30}]
PROG
(PARI) concat([0, 0, 0], -Vec(x^3*(1 - 2*x) / ((1 - x)*(1 - x - x^2)*(1 - 2*x^2)) + O(x^40))) \\ Colin Barker, Dec 01 2019
CROSSREFS
Sequence in context: A121341 A378681 A241737 * A126093 A065279 A343383
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Dec 02 2010
EXTENSIONS
More terms from Colin Barker, Dec 01 2019
STATUS
approved