OFFSET
0,6
REFERENCES
Burton, David M., Elementary number theory, McGraw Hill, N.Y., 2002, p. 286
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-5,0,2).
FORMULA
a(n) = Sum_{j=0..floor((n-1)/2)} (-2^j + binomial(n-j-1, j)).
a(n) = Fibonacci(n+1) - 2^ceiling(n/2) - 1.
a(n) = 2*a(n-1) + 2*a(n-2) - 5*a(n-3) + 2*a(n-5) for n^5. - Colin Barker, Dec 01 2019
MATHEMATICA
Table[Sum[-2^(j) +
Binomial[n - j - 1, j], {j, 0, Floor[(n - 1)/2]}], {n, 0, 30}]
PROG
(PARI) concat([0, 0, 0], -Vec(x^3*(1 - 2*x) / ((1 - x)*(1 - x - x^2)*(1 - 2*x^2)) + O(x^40))) \\ Colin Barker, Dec 01 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Dec 02 2010
EXTENSIONS
More terms from Colin Barker, Dec 01 2019
STATUS
approved