login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174949
A symmetrical triangle sequence based on:q=2/12;t(n,m,q)=12*(Binomial[n, m]*(1 - q) + (((n + m + 1)!/((n + 1)!* m!)) + ((2*n - m + 1)!/((n + 1)!*(n - m)!)))*q)
0
1, 1, 1, 1, 5, 1, 1, -11, -11, 1, 1, -99, -119, -99, 1, 1, -451, -611, -611, -451, 1, 1, -1783, -2561, -2763, -2561, -1783, 1, 1, -6787, -10007, -11211, -11211, -10007, -6787, 1, 1, -25651, -38231, -43627, -45071, -43627, -38231, -25651, 1, 1, -97139
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 7, -20, -315, -2122, -11449, -56008, -260087, -1170710, -5163049,...}
FORMULA
q=2/12;
t(n,m,q)=12*(Binomial[n, m]*(1 - q) + (((n + m + 1)!/((n + 1)!* m!)) + ((2*n - m + 1)!/((n + 1)!*(n - m)!)))*q);
out_n,m,q=t(n,m,q)-t(n,0,q)+1
EXAMPLE
{1},
{1, 1},
{1, 5, 1},
{1, -11, -11, 1},
{1, -99, -119, -99, 1},
{1, -451, -611, -611, -451, 1},
{1, -1783, -2561, -2763, -2561, -1783, 1},
{1, -6787, -10007, -11211, -11211, -10007, -6787, 1},
{1, -25651, -38231, -43627, -45071, -43627, -38231, -25651, 1},
{1, -97139, -145379, -167339, -175499, -175499, -167339, -145379, -97139, 1},
{1, -369399, -553673, -639867, -675861, -685451, -675861, -639867, -553673, -369399, 1}
MATHEMATICA
t[n_, m_, q_] = 12*(Binomial[n, m]*(1 - q) + (((n + m + 1)!/((n + 1)!* m!)) + ((2*n - m + 1)!/((n + 1)!*(n - m)!)))*q);
Table[Flatten[Table[Table[t[ n, m, q] - t[n, 0, q] + 1, {m, 0, n}], {n, 0, 10}]], {q, 0, 1, 1/12}]
CROSSREFS
Sequence in context: A296039 A296974 A146954 * A174861 A110522 A146987
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Apr 02 2010
STATUS
approved