Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Apr 17 2016 08:56:55
%S 29,409,461,661,929,1249,1289,1381,1801,1901,2081,2609,2621,2749,3041,
%T 3301,3881,5309,5701,6421,6481,6521,6529,7349,7489,7789,8641,8849,
%U 9349,9629,9649,9689,9829,10321,10709,10861,12841,14321,14561,15061,16661
%N Prime hypotenuses c with concatenation p = c//a//b a prime number.
%C See comments in A174825
%C c is the prime hypotenuse c, i. e. c of a primitive Pythagorean triple: a^2 + b^2 = c^2
%D W. W. R. Ball, H. S. M. Coxeter: Mathematical Recreations and Essays, New York: Dover, 1987
%D L. E. Dickson: "Rational Right Triangles", ch. 4 in History of the Theory of numbers, vol. II, Dover Publications 2005
%D W. Sierpinski: Pythagorean Triangles, Mineola, NY, Dover Publications, Inc, 2003
%e p = c//a//b: 292021, 409120391, 461380261, 661300589, 929920129, 1249960799, 12895601161,
%e 13811020931, 18011680649, 19011820549, 208116401281, 260918801809, 262111002379,
%e 27492580949, 30414403009, 330129401501, 388123603081, 53095300309, 570122205251
%e 29^2=20^2+21^2, 409^2=120^2+391^2, 461^2=380^2+261^2,
%e 661^2=300^2+589^2, 929^2=920^2+129^2, 1249^2=960^2+799^2,
%e 1289^2=560^2+1161^2,1381^2=1020^2+931^2, 1801^2=1680^2+649^2,
%e 1901^2=1820^2+549^2, 2081^2=1640^2+1281^2, 2609^2=1880^2+1809^2,
%e 2621^2=1100^2+2379^2, 2749^2=2580^2+949^2, 3041^2=440^2+3009^2,
%e 3301^2=2940^2+1501^2, 3881^2=2360^2+3081^2, 5309^2=5300^2+309^2,
%e 5701^2=2220^2+5251^2
%Y A008846, A020882, A048161, A067756, A138044, A174825
%K base,nonn,uned
%O 1,1
%A Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 01 2010
%E More terms from _Zak Seidov_, Apr 04 2010