login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174823 Numbers n such that the union of the decimal digits of n^2 and n^3 contains every decimal digit exactly three times. 0
497375, 539019, 543447, 586476, 589629, 601575, 646479, 858609, 895688, 959097 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sequence is finite (proof in reference). There are exactly 10 numbers.

REFERENCES

J.-M. De Koninck - Armel Mercier, 1001 problemes en theorie classique des nombres, exercise number 255, p. 184, Ellipses, Paris 2004.

LINKS

Table of n, a(n) for n=1..10.

EXAMPLE

497375 is in the sequence because: 497375^2 = 247381890625; 497375^3 = 123041567849609375; and the union of the digits is:{247381890625123041567849609375} contains 3 digits "0", 3 digits "1", 3 digits "2", ..., 3 digits "9".

MAPLE

with(numtheory): U:=array(1..30) :c:=0:for i from 300000 to 1000000 do: n2:=i^2:n3:=i^3:l2:=length(n2):l3:=length(n3):if  l2=30-l3 then n0:=n2:nn0:=n3:for m from 1 to l2 do:q2:=n0:u2:=irem(q2, 10):v2:=iquo(q2, 10):n0:=v2 : U[m]:=u2:od:for mm from l2+1 to 30 do:q3:=nn0:u3:=irem(q3, 10):v3:=iquo(q3, 10):nn0:=v3 : U[mm]:=u3: od: s1:=0:s2:=0:s3:=0:for j from 1 to 30 do:s1:=s1+U[j]^3:s2:=s2+U[j]^7:od:if  s1=6075 and s2=24241275 then c:=c+1:printf(`%d, `, i): else fi:else fi:od: print(c):

CROSSREFS

Sequence in context: A082248 A166196 A237383 * A238152 A145539 A157759

Adjacent sequences:  A174820 A174821 A174822 * A174824 A174825 A174826

KEYWORD

nonn,base,fini,full

AUTHOR

Michel Lagneau, Jan 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 21:20 EST 2020. Contains 332028 sequences. (Running on oeis4.)