login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: expansion of Sum_{k=0..n} binomial(n, k)*(Product_{j=0..n-k+1} (x + i)) * (-1)^k * x^(k-1).
2

%I #8 Apr 22 2019 18:09:27

%S 1,2,2,6,7,1,24,32,8,120,178,61,3,720,1164,494,50,5040,8748,4348,655,

%T 15,40320,74304,41768,8204,420,362880,704016,437148,104272,8365,105,

%U 3628800,7362720,4965912,1376864,149282,4410,39916800,84255840,60961176,19079836,2580550,123795,945

%N Triangle read by rows: expansion of Sum_{k=0..n} binomial(n, k)*(Product_{j=0..n-k+1} (x + i)) * (-1)^k * x^(k-1).

%C Row sums are: {1, 4, 14, 64, 362, 2428, 18806, 165016, 1616786, 17487988, 206918942, ...}.

%H G. C. Greubel, <a href="/A174789/b174789.txt">Rows n = 0..25 of triangle, flattened</a>

%e Triangle begins as:

%e 1;

%e 2, 2;

%e 6, 7, 1;

%e 24, 32, 8;

%e 120, 178, 61, 3;

%e 720, 1164, 494, 50;

%e 5040, 8748, 4348, 655, 15;

%e 40320, 74304, 41768, 8204, 420;

%e 362880, 704016, 437148, 104272, 8365, 105;

%e 3628800, 7362720, 4965912, 1376864, 149282, 4410;

%t p[x, 0]:= 1; p[x_, n_]:= Sum[Binomial[n, k]* Product[x+j, {j,0,n-k+1}] *(-x)^k, {k, 0, n}]/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]//Flatten

%t p[x_, 0]:= 1; p[x_, n_]:= (x+1)*Pochhammer[x+2, n]*Hypergeometric1F1[-n, -1-n-x, -x]; Table[CoefficientList[Series[p[x, n], {x, 0, 50}], x], {n, 0, 12}]//Flatten (* _G. C. Greubel_, Apr 22 2019 *)

%K nonn,tabl

%O 0,2

%A _Roger L. Bagula_, Mar 29 2010

%E Edited by _G. C. Greubel_, Apr 22 2019