%I
%S 0,320,1311360,5373952960,22022457918720,90248027176961600,
%T 369836393348730718080,1515589449695071305730240,
%U 6210885195014008862151805440,25452206013577958622026792962880
%N y-values in the solution to x^2 - 41*y^2 = 1.
%C The corresponding values of x of this Pell equation are in A174752.
%H Vincenzo Librandi, <a href="/A174778/b174778.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (4098,-1).
%F a(n) = 4098*a(n-1)-a(n-2) with a(1)=0, a(2)=320.
%F G.f.: 320*x^2/(1-4098*x+x^2).
%t LinearRecurrence[{4098,-1},{0,320},30]
%o (Magma) I:=[0, 320]; [n le 2 select I[n] else 4098*Self(n-1)-Self(n-2): n in [1..20]];
%Y Cf. A174752.
%K nonn,easy
%O 1,2
%A _Vincenzo Librandi_, Apr 15 2010
|