login
Partial sums of A076766.
0

%I #9 Mar 20 2013 04:50:26

%S 1,3,7,15,31,63,131,279,621,1469,3766,10694,34728,133582,636719,

%T 3955451,33664265,407703531,7147333784,180948983492,6537204164708,

%U 332740721681412,23627093701822296,2324803141466748032,315610211340647518667,58953876234603150481383

%N Partial sums of A076766.

%C Number of inequivalent binary linear codes of length <= n. Also the total number of nonisomorphic binary matroids on an k-set for all k <= n. The subsequence of primes is: 3, 7, 31, 131.

%e a(14) = 1 + 2 + 4 + 8 + 16 + 32 + 68 + 148 + 342 + 848 + 2297 + 6928 + 24034 + 98854 + 503137 = 636719 is prime.

%Y Cf. A076766, A076831, A034328, A055545.

%K nonn

%O 0,2

%A _Jonathan Vos Post_, Nov 30 2010