login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of permutations p of {1,...,n} such that |p(i)-p(i+1)| is in {1,2,3} for all i from 1 to n-1.
17

%I #31 Sep 23 2024 05:06:30

%S 1,1,2,6,24,72,180,428,1042,2512,5912,13592,30872,69560,155568,345282,

%T 761312,1669612,3645236,7927404,17180092,37119040,79986902,171964534,

%U 368959906,790214816,1689779842,3608413750,7696189046,16397254612,34902593796,74230774324

%N The number of permutations p of {1,...,n} such that |p(i)-p(i+1)| is in {1,2,3} for all i from 1 to n-1.

%C For n>1, a(n)/2 is the number of Hamiltonian paths on the graph with vertex set {1,...,n} where i is adjacent to j iff |i-j| is in {1,2,3}.

%H Andrew Howroyd, <a href="/A174700/b174700.txt">Table of n, a(n) for n = 0..100</a>

%F Empirical: a(n) = 3*a(n-1) - 4*a(n-3) + 3*a(n-4) - 4*a(n-5) - 9*a(n-6) + 2*a(n-7) + 5*a(n-8) + 9*a(n-9) + 17*a(n-10) + 16*a(n-11) + 14*a(n-12) + 8*a(n-13) - 2*a(n-14) - 5*a(n-15) - 5*a(n-16) - 6*a(n-17) - 4*a(n-18) - a(n-19) for n > 20. - _Andrew Howroyd_, Apr 08 2016

%F Empirical G.f.: (-3+x) + (2*(2-6*x+x^2+8*x^3-3*x^4+12*x^5 +9*x^6-17*x^7 -2*x^8-19*x^10 -26*x^11 -29*x^12-13*x^13+9*x^14+7*x^15 +4*x^16+6*x^17 +3*x^18)) / ((1+x)*(-1+x+x^2 +x^4+x^5)^2*(1-2*x+x^2-2*x^3-x^4-x^5 +x^7 +x^8)). - _Andrew Howroyd_, Apr 08 2016

%p f:= proc(m, M, n) option remember; local i, l, p, cnt; l:= array([i$i=1..n]); cnt:=0; p:= proc(t) local d, j, h; if t=n then d:=`if`(t=1,m,abs(l[t]-l[t-1])); if m<=d and d<=M then cnt:= cnt+1 fi else for j from t to n do l[t],l[j]:= l[j],l[t]; d:=`if`(t=1,m,abs(l[t]-l[t-1])); if m<=d and d<=M then p(t+1) fi od; h:= l[t]; for j from t to n-1 do l[j]:= l[j+1] od; l[n]:= h fi end; p(1); cnt end: a:=n->f(1,3,n); # _Alois P. Heinz_, Mar 27 2010

%t f[m_, M_, n_] := f[m, M, n] = Module[{i, l, p, cnt}, Do[l[i] = i, {i, 1, n}]; cnt = 0; p[t_] := Module[{d, j, h}, If[t == n, d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, cnt = cnt+1], For[j = t, j <= n, j++, {l[t], l[j]} = {l[j], l[t]}; d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, p[t+1]]]; h = l[t]; For[j = t, j <= n-1, j++, l[j] = l[j+1]]; l[n] = h]]; p[1]; cnt]; a[n_] := f[1, 3, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 15}] (* slow beyond n = 15 *) (* _Jean-François Alcover_, Jun 01 2015, after _Alois P. Heinz_ *)

%Y Cf. A003274, A174701, A174702, A174703, A174704, A174705, A174706, A174707, A174708, A185030, A216837, A302118.

%K nonn

%O 0,3

%A _W. Edwin Clark_, Mar 27 2010

%E a(19)-a(28) from _R. H. Hardin_, May 06 2010