Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 11 2024 06:50:21
%S 1,1,1,1,36,1,1,296,296,1,1,1932,4656,1932,1,1,11696,54086,54086,
%T 11696,1,1,69048,556596,1042920,556596,69048,1,1,405236,5406866,
%U 16866206,16866206,5406866,405236,1,1,2381700,51004320,247754256,404837664
%N Triangle read by rows: T(n,m)=A154694(n,m)-A154694(n,0)+1.
%C Reduces the values in the triangle A154694 such that each row starts with 1.
%C Row sums are:
%C 1, 2, 38, 594, 8522, 131566, 2294210, 45356618, 1007118218, 24839902470,
%C 673894929842,...
%F t(n,m)=A154694(n,m)-A154694(n,0)+1
%e {1},
%e {1, 1},
%e {1, 36, 1},
%e {1, 296, 296, 1},
%e {1, 1932, 4656, 1932, 1},
%e {1, 11696, 54086, 54086, 11696, 1},
%e {1, 69048, 556596, 1042920, 556596, 69048, 1},
%e {1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1},
%e {1, 2381700, 51004320, 247754256, 404837664, 247754256, 51004320, 2381700, 1},
%e {1, 14050376, 473595806, 3441231326, 8491073726, 8491073726, 3441231326, 473595806, 14050376, 1},
%e {1, 83216400, 4357421004, 46167420504, 164067684600, 244543444824, 164067684600, 46167420504, 4357421004, 83216400, 1}
%p A174673 := proc(n,m)
%p A154694(n,m)-A154694(n,0)+1 ;
%p end proc:
%p seq(seq( A174673(n,m),m=0..n),n=0..10) ; # _R. J. Mathar_, Mar 11 2024
%t Clear[t, p, q, n, m];
%t p = 2; q = 3;
%t t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
%t Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
%t Flatten[%]
%Y A154690, A154692, A154693, A154964
%K nonn,tabl,less
%O 0,5
%A _Roger L. Bagula_, Mar 26 2010