OFFSET
0,3
COMMENTS
Compare to the e.g.f. of A032315: Product_{n>=1} (1 + x^n/n!)^n.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..380
FORMULA
a(n) ~ c * n!, where c = product_{k>=2} 1/(1-1/k!)^k = 8.6304199482678945455168174204973507297310235756... . - Vaclav Kotesovec, Nov 03 2014
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} j*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Sep 12 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 15*x^3/3! + 82*x^4/4! + ...;
A(x) = 1/((1-x)*(1-x^2/2!)^2*(1-x^3/3!)^3*(1-x^4/4!)^4*(1-x^5/5!)^5* ...).
PROG
(PARI) {a(n)=n!*polcoeff(prod(k=1, n, 1/(1-x^k/k!+x*O(x^n))^k), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 30 2010
STATUS
approved