login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174661
E.g.f.: Product_{n>=1} 1/(1 - x^n/n!)^n.
6
1, 1, 4, 15, 82, 475, 3456, 26719, 239996, 2313609, 24846640, 285861301, 3586817928, 47988744115, 690525294018, 10547453864445, 171595180564816, 2949836193259105, 53630566660122696, 1025856767305899229, 20638503314068334480
OFFSET
0,3
COMMENTS
Compare to the e.g.f. of A032315: Product_{n>=1} (1 + x^n/n!)^n.
LINKS
FORMULA
a(n) ~ c * n!, where c = product_{k>=2} 1/(1-1/k!)^k = 8.6304199482678945455168174204973507297310235756... . - Vaclav Kotesovec, Nov 03 2014
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} j*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Sep 12 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 15*x^3/3! + 82*x^4/4! + ...;
A(x) = 1/((1-x)*(1-x^2/2!)^2*(1-x^3/3!)^3*(1-x^4/4!)^4*(1-x^5/5!)^5* ...).
PROG
(PARI) {a(n)=n!*polcoeff(prod(k=1, n, 1/(1-x^k/k!+x*O(x^n))^k), n)}
CROSSREFS
Cf. variant: A032315.
Sequence in context: A147690 A350830 A068313 * A207161 A203121 A232220
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 30 2010
STATUS
approved