OFFSET
1,12
COMMENTS
The sequence is symmetric over several ranges: a(n) = a(2271-n) for n > 84; a(n) = a(16545-n) for n > 920; a(n) = a(68660-n) for n > 9611. (Quote from Don Reble: "It's symmetric because 2271 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 5^1 + 5^2 + 5^3 + 5^4 + 7^1 + 7^2 + 7^3. That is, all powers less than 2187 (=3^7) contribute. So for any partition of n, with (2271-2187) < n < 2187, there's a complementary partition for 2271-n.")
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..10000
EXAMPLE
a(100)=2 since 100 = 3 + 3^2 + 3^3 + 5 + 7 + 7^2 and 100 = 3 + 3^2 + 3^4 + 7.
MATHEMATICA
n=512; it=Rest@ CoefficientList[Series[ Product[1+x^(3^k), {k, Ceiling[Log[3, n]]}]* Product[1+x^(5^k), {k, Ceiling[Log[5, n]]}]* Product[1+x^(7^k), {k, Ceiling[Log[7, n]]}], {x, 0, n}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Mar 25 2010
STATUS
approved