login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of five-prime Carmichael numbers less than 10^n.
10

%I #19 Apr 20 2024 04:17:22

%S 0,0,0,0,0,0,1,3,27,146,492,1336,3156,7082,14938,29282,55012,100707,

%T 178063,306310,514381,846627,1370257

%N Number of five-prime Carmichael numbers less than 10^n.

%H Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Text file readme.text summarizing enumeration of Carmichael numbers up to 10^22</a>.

%H Claude Goutier, <a href="/A055553/a055553.txt">Text file readme.text summarizing enumeration of Carmichael numbers up to 10^22</a>. [Local copy, with permission]

%H R. G. E. Pinch, <a href="http://s369624816.websitehome.co.uk/rgep/p82p.pdf">The Carmichael numbers up to 10^21</a>, Proceedings of Conference on Algorithmic Number Theory 2007.

%e For n=6, the smallest Carmichael number with 5 prime factors is 825265 = 5*7*17*19*73.

%Y For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

%Y Cf. A002997, A006931, A055553.

%K nonn,more

%O 0,8

%A _Michel Lagneau_, Mar 23 2010

%E a(22) from _Claude Goutier_ added by _Amiram Eldar_, Apr 19 2024