login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174602
Smallest prime that begins a run of n Ramanujan primes that are consecutive primes.
6
2, 67, 227, 227, 227, 2657, 2657, 2657, 2657, 2657, 2657, 2657, 2657, 562871, 793487, 809707, 809707, 984241, 984241, 984241, 6234619, 11652013, 41662651, 41662651, 41662651, 94653397, 383825567, 869730887, 953913871, 953913871, 953913871
OFFSET
1,1
COMMENTS
The first run of 13 consecutive Ramanujan primes was mentioned by Sondow.
Starting at index m = A191228(a(n)) in A190874(m), the first instance of a count of n - 1 consecutive 1's is seen. - John W. Nicholson, Dec 15 2011
LINKS
J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010.
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009) 630-635.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
EXAMPLE
67 and 71 are the first two Ramanujan primes that are consecutive primes, so a(2) = 67.
MATHEMATICA
nn=10000; t=Table[0, {nn}]; len=Prime[3*nn]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s<nn, t[[s+1]]=k], {k, len}]; t=t+1; ind=PrimePi[t]; d=Differences[ind]; cnt=0; n=1; Join[{2}, Reap[Do[If[d[[i]]==1, cnt++; If[cnt==n, Sow[t[[i-n+1]]]; n++], cnt=0], {i, Length[d]}]][[2, 1]]]
PROG
(Perl) use ntheory ":all"; my $r=ramanujan_primes(1e8); my $max = 0; for (0..$#$r-2) { my $k=0; $k++ while next_prime($r->[$_+$k]) == $r->[$_+$k+1]; say ++$max, " ", $r->[$_] while $k >= $max; } # Dana Jacobsen, Jul 14 2016
CROSSREFS
Cf. A104272 (Ramanujan primes), A174641 (runs of non-Ramanujan primes).
Sequence in context: A217599 A107214 A371509 * A154880 A160958 A046848
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 29 2010
STATUS
approved