|
|
A174602
|
|
Smallest prime that begins a run of n Ramanujan primes that are consecutive primes.
|
|
6
|
|
|
2, 67, 227, 227, 227, 2657, 2657, 2657, 2657, 2657, 2657, 2657, 2657, 562871, 793487, 809707, 809707, 984241, 984241, 984241, 6234619, 11652013, 41662651, 41662651, 41662651, 94653397, 383825567, 869730887, 953913871, 953913871, 953913871
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The first run of 13 consecutive Ramanujan primes was mentioned by Sondow.
|
|
LINKS
|
|
|
EXAMPLE
|
67 and 71 are the first two Ramanujan primes that are consecutive primes, so a(2) = 67.
|
|
MATHEMATICA
|
nn=10000; t=Table[0, {nn}]; len=Prime[3*nn]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s<nn, t[[s+1]]=k], {k, len}]; t=t+1; ind=PrimePi[t]; d=Differences[ind]; cnt=0; n=1; Join[{2}, Reap[Do[If[d[[i]]==1, cnt++; If[cnt==n, Sow[t[[i-n+1]]]; n++], cnt=0], {i, Length[d]}]][[2, 1]]]
|
|
PROG
|
(Perl) use ntheory ":all"; my $r=ramanujan_primes(1e8); my $max = 0; for (0..$#$r-2) { my $k=0; $k++ while next_prime($r->[$_+$k]) == $r->[$_+$k+1]; say ++$max, " ", $r->[$_] while $k >= $max; } # Dana Jacobsen, Jul 14 2016
|
|
CROSSREFS
|
Cf. A104272 (Ramanujan primes), A174641 (runs of non-Ramanujan primes).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|