Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 25 2024 09:21:55
%S 1,1,3,1,9,13,1,37,51,1,141,193,1,529,723,1,1977,2701,1,7381,10083,1,
%T 27549,37633,1,102817,140451,1,383721,524173,1,1432069,1956243,1,
%U 5344557,7300801,1,19946161,27246963,1,74440089,101687053,1,277814197
%N Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A080040(n)) ), where A080040(n) = (1+sqrt(3))^n + (1-sqrt(3))^n.
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,5,0,0,-5,0,0,1).
%F a(3n-3) = 1, a(3n-2) = A080040(2n-1)/2^(n-1) - 1, a(3n-1) = A080040(2n)/2^n - 1, for n>=1 [conjecture].
%F a(n) = 5*a(n-3)-5*a(n-6)+a(n-9). G.f.: -(x^2-x+1)*(x^6-2*x^5-2*x^4-2*x^3+4*x^2+2*x+1) / ((x-1)*(x^2+x+1)*(x^6-4*x^3+1)). [_Colin Barker_, Jan 20 2013]
%e Let L = Sum_{n>=1} 1/(n*A080040(n)) or, more explicitly,
%e L = 1/2 + 1/(2*8) + 1/(3*20) + 1/(4*56) + 1/(5*152) + 1/(6*416) +...
%e so that L = 0.5855329921665857283309456463364081071245363598803...
%e then exp(L) = 1.7959479567807442397990076546690432122217738278933...
%e equals the continued fraction given by this sequence:
%e exp(L) = [1;1,3,1,9,13,1,37,51,1,141,193,1,529,723,1,...]; i.e.,
%e exp(L) = 1 + 1/(1 + 1/(3 + 1/(1 + 1/(9 + 1/(13 + 1/(1 +...)))))).
%e Compare these partial quotients to A080040(n)/2^[n/2], n=1,2,3,...:
%e [2,4,10,14,38,52,142,194,530,724,1978,2702,7382,10084,27550,...],
%e where A080040 begins:
%e [2,8,20,56,152,416,1136,3104,8480,23168,63296,172928,472448,...].
%o (PARI) {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((1+sqrt(3))^m+(1-sqrt(3))^m))));contfrac(exp(L))[n]}
%Y Cf. A080040, A174500, A174504, A174509.
%K cofr,nonn,easy
%O 0,3
%A _Paul D. Hanna_, Mar 21 2010