login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} d*sigma(n/d)*tau(d).
3

%I #26 Sep 08 2022 08:45:51

%S 1,7,10,31,16,70,22,111,64,112,34,310,40,154,160,351,52,448,58,496,

%T 220,238,70,1110,166,280,334,682,88,1120,94,1023,340,364,352,1984,112,

%U 406,400,1776,124,1540,130,1054,1024,490,142,3510,316,1162,520,1240

%N a(n) = Sum_{d|n} d*sigma(n/d)*tau(d).

%C Compare to sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d) = sum of squares of divisors of n.

%C tau(n) = A000005(n) = the number of divisors of n,

%C and sigma(n) = A000203(n) = sum of divisors of n.

%C Dirichlet convolution of A038040 and A000203. - _R. J. Mathar_, Feb 06 2011

%H Reinhard Zumkeller, <a href="/A174466/b174466.txt">Table of n, a(n) for n = 1..10000</a>

%F Logarithmic derivative of A174465.

%F Dirichlet g.f. zeta(s)*(zeta(s-1))^3. - _R. J. Mathar_, Feb 06 2011

%F a(n) = Sum_{d|n} tau_3(d)*d = Sum_{d|n} A007425(d)*d. - _Enrique Pérez Herrero_, Jan 17 2013

%F G.f.: Sum_{k>=1} k*tau_3(k)*x^k/(1 - x^k). - _Ilya Gutkovskiy_, Sep 06 2018

%F Sum_{k=1..n} a(k) ~ Pi^2*n^2/24 * (log(n)^2 + ((6*g - 1) + 12*z1/Pi^2) * log(n) + (1 - 6*g + 12*g^2 - 12*sg1)/2 + 6*((6*g - 1)*z1 + z2)/Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - _Vaclav Kotesovec_, Feb 02 2019

%o (PARI) {a(n)=sumdiv(n,d,d*sigma(n/d)*sigma(d,0))}

%o (Haskell)

%o a174466 n = sum $ zipWith3 (((*) .) . (*))

%o divs (map a000203 $ reverse divs) (map a000005 divs)

%o where divs = a027750_row n

%o -- _Reinhard Zumkeller_, Jan 21 2014

%o (Magma) [&+[d*DivisorSigma(1, n div d)*#Divisors(d):d in Divisors(n)]:n in [1..55]]; // _Marius A. Burtea_, Oct 18 2019

%Y Cf. A000005 (tau), A000203 (sigma), A007425 (tau_3), A034718, A038040, A174465.

%K nonn,mult

%O 1,2

%A _Paul D. Hanna_, Apr 04 2010